Skip to main content
Log in

Synthesis of a novel vitamin E derivative, 2-(α-d-glucopyranosyl)methyl-2,5,7,8-tetramethylchroman-6-ol, by α-glucosidase-catalyzed transglycosylation

  • Published:
Lipids

Abstract

A novel derivative of vitamin E, vitamin E glucoside, was synthesized from 2-hydroxymethyl-2,5,7,8-tetramethylchroman-6-ol and maltose in a solution containing DMSO by transglycosylation with α-glucosidase from Saccharomyces species. The glycosylated product was identified as 2-(α-d-glucopyranosyl)methyl-2,5,7,8,-tetramethylchroman-6-ol (TMG) by mass spectrometry and nuclear magnetic resonance spectroscopy. The optimal pH of transglycosylation was 5.5, and the yield of TMG increased as the concentration of maltose increased. IMG has high solubility in water (>1×103 mg/mL). The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of TMG was found to be nearly the same as those of α-tocopherol, Trolox (2-carboxy-2,5,7,8-tetramethylchroman-6-ol), and ascorbic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMSO:

dimethyl sulfoxide

DPPH:

1,1-diphenyl-2-picrylhy-drazy

FAB-MS:

fast atom bombardment-mass spectrometry

HPLC:

high-performance liquid chromatography

IR:

intrared

NMR:

nuclear magnetic resonance

TLC:

thin-layer chromatography

TM:

2-hydroxymethyl-2,5,7,8-tetramethylchroman-6-ol

TMG:

2-(α-d-glucopyranosyl)methyl-2,5,7,8-tetramethylchroman-6-ol

Trolox:

2-carboxy-2,5,7,8-tetramethylchroman-6-ol

UV:

ultraviolet

References

  1. Sies, H. (1991) Oxidative Stress: Oxidants and Antioxidants. Academic Press, London.

    Google Scholar 

  2. Zalkin, H., and Tappel, A.L. (1960) Studies of the Mechanism of Vitamin E Action. IV. Lipid Peroxidation in the Vitamin E-Deficient Rabbit. Arch. Biochem. Biophys. 88, 113–117.

    Article  CAS  PubMed  Google Scholar 

  3. Burton, G.W., and Ingold, K.U. (1986) Vitamin E: Application of the Principles of Physical Organic Chemistry to the Exploration of Its Structure and Function. Acc. Chem. Res. 19, 194–201.

    Article  CAS  Google Scholar 

  4. Niki, E. (1987) Antioxidants in Relation to Lipid Peroxidation. Chem. Phys. Lipids 44, 227–253.

    Article  CAS  PubMed  Google Scholar 

  5. Diplock, A.T., Machlin, L.J., Packer, L., and Pryor, W.A. (1989) Vitamin E: Biochemistry and Health Implications. New York Academy of Sciences, New York.

    Google Scholar 

  6. Burton, G.W. and Traber, M.G. (1990) Vitamin E: Antioxidant Activity, Biokinetics, and Bioavailability, Annu. Rev. Nutr. 10, 357–382.

    Article  CAS  PubMed  Google Scholar 

  7. Fukuzawa, K., Chida, H., Tokumura, A., and Tsukatami, H. (1981) Antioxidative Effect of α-Tocopherol Incorporation into Lecithin Liposomes on Ascorbic Acid-Fe2+-Induced Lipid Peroxidation. Arch. Biochem. Biophys. 206, 173–180.

    Article  CAS  PubMed  Google Scholar 

  8. Burton, G.W., Joyce, A., and Ingold, K.U. (1983) Is Vitamin E the Only Lipid-Soluble Chain-Breaking Antioxidant in Human Blood Plasma and Erythrocyte Membranes? Arch. Biochem. Biophys. 221, 281–290.

    Article  CAS  PubMed  Google Scholar 

  9. Nishikimi, M., Yamada, H., and Yagi, K. (1980) Oxidation by Superoxide of Tocopherols Dispersed in Aqueous Media with Deoxycholate. Biochim. Biophys. Acta 627, 101–108.

    Article  CAS  PubMed  Google Scholar 

  10. Grams, G.W. (1971) Oxidation of α-Tocopherol by Singlet Oxygen. Tetrahedron Lett. 50, 4823–4825.

    Article  Google Scholar 

  11. Fukuzawa, K., and Gebicki, J.M. (1983) Oxidation of α-Tocopherol in Micelles and Liposomes by the Hydroxy, Perhydroxy and Superoxide Free Radicals. Arch. Biochem. Biophys. 226, 242–251.

    Article  CAS  PubMed  Google Scholar 

  12. Niki, E., Kawakami, A., Saito, M., Yamamoto, Y., Tsuchiya, J., and Kamiya, Y. (1985) Effect of Phytyl Side Chain of Vitamin E on Its Antioxidant Activity. J. Biol. Chem. 260, 2191–2196.

    CAS  PubMed  Google Scholar 

  13. Aruoma, O., Evans, P.J., Kaur, H., Sutcliffe, L., and Halliwell, B. (1990) An Evaluation of the Antioxidant and Potential Pro-Oxidant Properties of Food Additives and of Trolox C, Vitamin E and Probucol. Free Radical Res. Commun. 3, 143–157.

    Article  Google Scholar 

  14. Bolkenius, F.N., Griser, J.M., and DeJong, W. (1991) A Water-Soluble Quaternary Ammonium Analog of α-Tocopherol. That Scavenges Lipoperoxyl, Superoxyl and Hydroxyl Radicals. Free Radical Res. Commun. 14, 363–372.

    Article  CAS  Google Scholar 

  15. Silver, P.J., Gordon, R.J., Horan, P.J., Bushover, C.R., Gorzyca, W.P., Etzler, J.R., and Buchhplz, R.A. (1992) Low Molecular Weight Analogs of Trolox with Potent Antioxidant Activity in vitro and in vivo, Drug Develop Res. 27, 45–52.

    Article  CAS  Google Scholar 

  16. Forrest, V.J., Kang, Y.H., and McClain, D.E. (1994) Oxidative Stress-Induced Apoptosis Prevented by Trolox, Free Radical Biol. Med. 16, 675–684.

    Article  CAS  Google Scholar 

  17. Barclay, L.R.C., and Vinqvist, M.R. (1994) Membrane Peroxidation: Inhibiting Effect of Water-Soluble Antioxidants on Phospholipids of Different Charge Types, Free Radical Biol. Med. 16, 779–788.

    Article  CAS  Google Scholar 

  18. Yamamoto, I., Muto, N., Murakami, K., Suga, S., and Yamaguti, H. (1990) L-Ascorbic Acid α-Glucoside Formed by Regioselective Transglycosylation with Rat Intestinal and Rice Seed α-Glucosidases: Its Improved Stability and Structural Determination, Chem. Pharm. Bull. 38, 3020–3023.

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki, Y., and Suzuki, K. (1991) Enzymatic Formation of 4G-α-d-Glucopyranosyl-rutin. Agric. Biol. Chem. 55, 181–187.

    CAS  PubMed  Google Scholar 

  20. Kitao, S., and Sekine, H. (1994) α-d-Glucosyl Transfer to Phenolic Compounds by Sucrose Phosphorylase from Leuconostoc mesenteroides and Production of α-Arubutin. Biosci. Biotech. Biochem. 58, 38–42.

    Article  CAS  Google Scholar 

  21. Halvorson, H. (1966) α-Glucosidase from yeast. Methods Enzymol. 8, 559–565. Academic Press, New York.

    Google Scholar 

  22. Tiba, S. (1988) Studies on the Transglucosylation andSubstrate Specificity of α-Glucosidase. J. Jpn. Soc. Starch Sci. 35, 69–77.

    Article  Google Scholar 

  23. Scott, J.W., Cort, W.M., Harley, H., Parrish, D.R., and Saucy, G. (1974) 6-Hydroxychroman-2-carboxylic Acids: Novel Antioxidants, J. Am. Oil Chem. Soc. 51, 200–203.

    Article  CAS  Google Scholar 

  24. Cohen, N., Lopresti, R.J., and Saucy, G. (1979) A Novel Total Synthesis of (2R, 4′R, 8′R)-α-Tocopherol (Vitamin E). Construction of Chiral Chromans from an Optically Active, Nonaromatic Precursor. J. Am. Chem. Soc. 101, 6710–6716.

    Article  CAS  Google Scholar 

  25. Kingsley, G.R., and Getchell, G. (1960) Direct Ultramicro Glucose Oxidase Method for Determination of Glucose in Biologic Fluids. Clin. Chem. 6, 466–475.

    CAS  PubMed  Google Scholar 

  26. Tsugo, T., Yamauchi, K., and Kanno, C. (1968) Separation and Determination of Tocopherols in Milk and Other Foods by Thin-Layer Chromatography. Nippon Nogeikagaku Kaishi 42, 367–377.

    Article  CAS  Google Scholar 

  27. Blois, M.S. (1958) Antioxidant Determinations by the Use of a Stable Free Radical. Nature 181, 1199–1200.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Murase, H., Yamauchi, R., Kato, K. et al. Synthesis of a novel vitamin E derivative, 2-(α-d-glucopyranosyl)methyl-2,5,7,8-tetramethylchroman-6-ol, by α-glucosidase-catalyzed transglycosylation. Lipids 32, 73–78 (1997). https://doi.org/10.1007/s11745-997-0011-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-997-0011-6

Keywords

Navigation