Skip to main content
Log in

Lipid composition of cultured endothelial cells in relation to their growth

  • Published:
Lipids

Abstract

Human endothelial cells in culture were examined in different growth conditions. The human endothelial cell line, EA.hy 926 cell line, was used and cells were studied either in exponential growth phase, at confluence, or growth-arrested by serum deprivation. Phospholipids were separated and analyzed by high-performance thin-layer chromatography, and their fatty acids were quantified by gas-liquid chromatography. No significant differences in the phospholipid distributions were found between exponentially growing and confluent endothelial cells in which phosphatidylcholine (PC) represented the major phospholipid. In comparison, serum-deprived cells exhibited higher proportions of sphingomyelin and lower content of PC. We also found that among the total lipids, cholesterol level for dividing endothelial cells was lower than for cells growth-arrested either by serum deprivation or by contact inhibition at confluence. The global fatty acid distribution was not affected by the growth conditions. Thus, oleate (18∶1n−9 and 18∶1n-7), palmitate (C16∶0), and stearate (C18∶0) were the main components of endothelial cell membranes. However, the fatty acid distributions obtained from each phospholipid species differed with the growth status. Altogether, the data indicated that subtle modulations of endothelial cell metabolism appear upon cell growth. The resulting membrane-dependent cellular functions such as cholesterol transport and receptor activities can be expected to be relevant for lipid trafficking within the vessel wall in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s minimal essential medium

EDTA:

ethylenediaminetetraacetic acid

EA.hy 926:

human endothelial cell line

FCS:

fetal calf serum

GLC:

gas-liquid chromatography

HAT:

hypoxanthine-aminopterin-thymidine

HDL:

high density lipoprotein

HPLC:

high-performance liquid chromatography

HPTLC:

high-performance thin layer chromatography

LDL:

low density lipoprotein

NL:

neural lipids

PBS:

phosphate buffer saline

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

PS:

phosphatidylserine

SM:

sphingomyelin

SMC:

smooth muscle cells

TLC:

thin-layer chromatography

References

  1. Henning, B., Diana, J.N., Toborek, M., and McClain, C.J. (1994) Influence of Nutrients and Cytokines on Endothelial Cell Metabolism, J. Am. Coll. Nutr. 13, 224–231.

    Article  Google Scholar 

  2. Ross, R. (1995) Cell Biology of Atherosclerosis, Ann. Rev. Physiol. 57, 791–804.

    Article  CAS  Google Scholar 

  3. Tretyakov, A.V., and Farber, H.W. (1993) Endothelial Cell Phospholipid Distribution and Phospholipase Activity During Acute and Chronic Hypoxia, Am. J. Physiol. 265, C770-C780.

    CAS  PubMed  Google Scholar 

  4. Spector, A.A., and Yorek, M.A. (1985) Membrane Lipid Composition and Cellular Function, J. Lipid Res. 26, 1015–1035.

    CAS  PubMed  Google Scholar 

  5. Takamura, H., Kasai, H., Arita, H., and Kito, M. (1990) Phospholipid Molecular Species in Human Umbilical Artery and Vein Endothelial Cells, J. Lipid Res. 31, 709–717.

    CAS  PubMed  Google Scholar 

  6. Murphy, E.J., Joseph, L., Stephens, R., and Horrocks, L.A. (1992) Phospholipid Composition of Cultured Human Endothelial Cells, Lipids 27, 150–153.

    Article  CAS  PubMed  Google Scholar 

  7. Medow, M.S., Intrieri, L., Moatter, T., and Gerritsen, M.E. (1989) Dexamethasone Effects on Microvascular Endothelial Cell Lipid Composition, Am. J. Physiol. 257, C512-C519.

    CAS  PubMed  Google Scholar 

  8. Pacifici, E.H.K., McLeod, L.L., and Sevanian, A. (1994) Lipid Hydroperoxide-Induced Peroxidation and Turnover of Endothelial Cell Phospholipids, Free Radical Biol. Med. 17, 297–309.

    Article  CAS  Google Scholar 

  9. Kirkpatrick, C.J., Melzner, I., and Göller, T. (1985) Comparative Effects of Trypsin, Collagenase and Mechanical Harvesting on Cell Membrane Lipids Studied in Monolayer-Cultured Endothelial Cells and a Green Monkey Kidney Cell Line, Biochim. Biophys. Acta 846, 120–126.

    Article  CAS  PubMed  Google Scholar 

  10. Edgell, C.J.S., McDonald, C.C., and Graham, J.B. (1983) Permanent Cell Line Expressing Human Factor VIII-Related Antigen Established by Hybridization, Proc. Natl. Acad. Sci. 80, 3734–3737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ahn, K., Pan, S., Beningo, K., and Hupe, D. (1995) A Permanent Human Cell Line (EA.hy 926) Preserves the Characteristics of Endothelin Converting Enzyme from Primary Human Umbilical Vein Endothelial Cells, Life Sci. 56, 2331–2341.

    Article  CAS  PubMed  Google Scholar 

  12. Suggs, J.E., Madden, M.C., Friedman, M., and Edgell, C.J.S. (1986) Prostacyclin Expression by a Continuous Human Cell Line Derived from Vascular Endothelium, Blood 68, 825–829.

    CAS  PubMed  Google Scholar 

  13. Emies, J.J., and Edgell, C.J.S. (1988) Fibrinolytic Properties of a Human Endothelial Hybrid Cell Line (EA.hy 926), Blood 71, 1669–1675.

    Google Scholar 

  14. Beretz, A., Freyssinet, J.M., Gauchy, J., Schmitt, D.A., Klein-Soyer, C., Edgell, C.J.S., and Cazenave, J.P. (1989) Stability of the Thrombin-Thrombomodulin Complex on the Surface of Endothelial Cells from Human Saphenous Vein or from the Cell Line EA.hy 926, Biochem. J. 259, 35–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kilsdonk, E.P.C., Dorsman, A.N.R.D., and van Tol, A. (1993) Net Transport of Cholesterol from Cells of a Human EA.hy 926 Endothelial Cell Line to High Density Lipoprotein, Experientia 49, 561–566.

    Article  CAS  PubMed  Google Scholar 

  16. Bernini, F., Bellosta, S., Corsini, A., Maggi, F.M., Fumagalli, R., and Catapano, A.L. (1991) Cholesterol Stimulation of HDL Binding to Human Endothelial Cell EA. hy 926 and Skin Fibroblasts: Evidence for a Mechanism Independent of Cellular Metabolism, Biochim. Biophys. Acta 1083, 94–100.

    Article  CAS  PubMed  Google Scholar 

  17. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with Folin Phenol Reagent, J. Biol. Chem., 193, 265–275.

    CAS  PubMed  Google Scholar 

  18. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method for Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    Article  CAS  PubMed  Google Scholar 

  19. Gouygou, J.P., and Durand, P. (1994) High-Performance-Thin-Layer-Chromatography with Automated-Gradient-Development: New Technique for Separation and Quantitation of Lipids. 24th WEFTA, Nantes, France, Sept. 25–29.

  20. Metcalfe, L.D., and Schmitz, A.A. (1961) The Rapid Preparation of Fatty Acid Esters for Gas Chromatographic Analysis, Anal. Chem. 33, 363–364.

    Article  CAS  Google Scholar 

  21. Schaefer, H.I.M.B., van der Laarse, A., and van’t Hooft, F.M. (1992) Growth Characteristics of a Permanent Human Endothelial Cell Line, In Vitro Cell. dev. Biol. 28, 465–467.

    Article  Google Scholar 

  22. Kilsdonk, E.P.C., Dorsman, A.N.R.D., van Gent, T., and van Tol, A. (1992) Effect of Phospholipid Fatty Acid Composition of Endothelial Cells on Cholesterol Efflux Rates, J. Lipid Res. 33, 1373–1382.

    CAS  PubMed  Google Scholar 

  23. Kaduce, T.L., Spector, A.A., and Bar, R.S. (1982) Linoleic Acid Metabolism and Prostaglandin Production by Cultured Bovine Pulmonary Artery Endothelial Cells, Arteriosclerosis 2, 380–389.

    Article  CAS  PubMed  Google Scholar 

  24. Folkman, J., and Klagsbrun, M. (1987) Angiogenic Factors, Science 235, 442–447.

    Article  CAS  PubMed  Google Scholar 

  25. Klagsbrun, M., and Dluz, S. (1993) Smooth Muscle Cell and Endothelial Cell Growth Factors, Trends Cardiovasc. Med. 3, 213–217.

    Article  CAS  PubMed  Google Scholar 

  26. Whatley, R.E., Satoh, K., Zimmerman, G.A., McIntyre, T.M., and Prescott, S.M. (1994) Proliferation-Dependent Changes in Release of Arachidonic Acid from Endothelial Cells, J. Clin. Invest. 94, 1889–1900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Exton, J.H., Taylor, S.J., Augert, G., and Bocckino, S.B. (1991) Cell Signalling Through Phospholipid Breakdown, Mol. Cell. Biochem. 104, 81–86.

    Article  CAS  PubMed  Google Scholar 

  28. Montchilova-Pankova, A.B., Markovska, T.T., Yanev, E.I., and Koumanov, K.S. (1994) Phospholipase C Activities in Rat Liver Plasma Membranes Depend on the Phospholipid Composition, J. Lipid Mediat. Cell Signal. 9, 235–246.

    Google Scholar 

  29. Soeda, S., Honda, O., Shimeno, H., and Nagamatsu, A. (1995) Sphingomyelinase and Cell-Permeable Ceramide Analogs Increase the Release of Plasminogen Activator Inhibitor-1 from Cultured Endothelial Cells, Thromb. Res. 80, 509–518.

    Article  CAS  PubMed  Google Scholar 

  30. Coroneos, E., Martinez, M., McKenna, S., and Kester, M. (1995) Differential Regulation of Sphingomyelinase and Ceramidase Activities by Growth Factors and Cytokines. Implications for Cellular Proliferation and Differentiation, J. Biol. Chem. 270, 23305–23309.

    Article  CAS  PubMed  Google Scholar 

  31. Desai, N.N., Carlson, R.O., Mattie, M.E., Olivera, A., Buckley, N.E., Seki, T., Brooker, G., and Spiegel, S. (1993) Signaling Pathways for Sphingosylphosphorylcholine-Mediated Mitogenesis in Swiss 3T3 Fibroblasts, J. Cell Biol. 121, 1385–1395.

    Article  CAS  PubMed  Google Scholar 

  32. D’amore, P., and Smith, S.R. (1993) Growth Factor Effects on Cells of the Vascular Wall: A Survey, Growth Factors 8, 61–75.

    Article  PubMed  Google Scholar 

  33. Letourneur, D., Champion, J., Slaoui, F., and Jozefonvicz, J. (1993) In Vitro Stimulation of Human Endothelial Cells by Derivatized Dextrans, In Vitro Cell. Dev. Biol. 29, 67–72.

    Article  Google Scholar 

  34. Castellot, J.J., Addonizio, M.L., Rosenberg, R.D., and Karnovsky, M.J. (1981) Cultured Endothelial Cells Produce a Heparin-Like Inhibitor of Smooth Muscle Cell Growth, J. Cell Biol. 90, 372–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Letourneur, D., Logeart, D., Avramoglou, T., and Jozefonvicz, J. (1993) Antiproliferative Capacity of Synthetic Dextrans on Smooth Muscle Cell Growth. The Model of Derivatized Dextrans as Haparin-Like Polymers, J. Biomater. Sci. Polymer Edn. 4, 431–444.

    Article  CAS  Google Scholar 

  36. Letourneur, D., Caleb, B.L., and Castellot, J.J. (1995) Heparin Binding, Internalization and Metabolism in Vascular Smooth Muscle Cells. I. Upregulation of Heparin Binding Correlates with Antiproliferative Activity, J. Cell. Physiol. 165, 676–686.

    Article  CAS  PubMed  Google Scholar 

  37. Nicholson, A.C., and Hajjar, D.P. (1992) Transforming Growth Factor-β Up-Regulates Low Density Lipoprotein Receptor-Mediated Cholesterol Metabolism in Vascular Smooth Muscle Cells, J. Biol. Chem. 267, 25982–25987.

    CAS  PubMed  Google Scholar 

  38. Alexander-North, L.S., North, J.A., Kiminyo, K.P., Buettner, G.R., and Spector, A.A. (1994) Polyunsaturated Fatty Acids Increase Lipid Radical Formation Induced by Oxidant Stress in Endothelial Cells, J. Lipid Res. 35, 1773–1785.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Cansell, M., Gouygou, JP., Jozefonvicz, J. et al. Lipid composition of cultured endothelial cells in relation to their growth. Lipids 32, 39–44 (1997). https://doi.org/10.1007/s11745-997-0006-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-997-0006-3

Keywords

Navigation