Skip to main content
Log in

Low n-6/n-3 PUFA Ratio Improves Lipid Metabolism, Inflammation, Oxidative Stress and Endothelial Function in Rats Using Plant Oils as n-3 Fatty Acid Source

  • Original Article
  • Published:
Lipids

Abstract

Lipid metabolism, inflammation, oxidative stress and endothelial function play important roles in the pathogenesis of cardiovascular disease (CVD), which may be affected by an imbalance in the n-6/n-3 polyunsaturated fatty acid (PUFA) ratio. This study aimed to investigate the effects of the n-6/n-3 PUFA ratio on these cardiovascular risk factors in rats fed a high-fat diet using plant oils as the main n-3 PUFA source. The 1:1 and 5:1 ratio groups had significantly decreased serum levels of total cholesterol, low-density lipoprotein cholesterol, and proinflammatory cytokines compared with the 20:1 group (p < 0.05). Additionally, the 20:1 group had significantly increased serum levels of E-Selectin, von Willebrand factor (vWF), and numerous markers of oxidative stress compared with the other groups (p < 0.05). The 1:1 group had a significantly decreased lipid peroxide level compared with the other groups (p < 0.05). Serum levels of malondialdehyde, reactive oxygen species and vWF tended to increase with n-6/n-3 PUFA ratios increasing from 5:1 to 20:1. We demonstrated that low n-6/n-3 PUFA ratio (1:1 and 5:1) had a beneficial effect on cardiovascular risk factors by enhancing favorable lipid profiles, having anti-inflammatory and anti-oxidative stress effects, and improving endothelial function. A high n-6/n-3 PUFA ratio (20:1) had adverse effects. Our results indicated that low n-6/n-3 PUFA ratios exerted beneficial cardiovascular effects, suggesting that plant oils could be used as a source of n-3 fatty acids to prevent CVD. They also suggested that we should be aware of possible adverse effects from excessive n-3 PUFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALA:

α-Linolenic acid (18:3n-3)

ANOVA:

Analysis of variance

ApoC3:

Apolipoprotein C3

CRP:

C-reactive protein

CVD:

Cardiovascular disease

DHA:

Docosahexaenoic acid (22:6n-3)

ELISA:

Enzyme-linked immunosorbent assay

EPA:

Eicosapentaenoic acid (20:5n-3)

ES:

E-selectin

HDL-C:

High-density lipoprotein cholesterol

HOMA-IR:

Homeostasis model assessment insulin resistance

IL-6:

Interleukin-6

8-Iso-PG:

8-Iso-prostaglandin

LDL-C:

Low-density lipoprotein cholesterol

LPO:

Lipid peroxide

MDA:

Malondialdehyde

MPO:

Myeloperoxidase

MUFA:

Monounsaturated fatty acid(s)

NADPH-OX:

NADPH oxidase

Ox-LDL:

Oxidized low-density lipoprotein

PC:

Protein carbonyl

PUFA:

Polyunsaturated fatty acid(s)

ROS:

Reactive oxygen species

SFA:

Saturated fatty acid(s)

TAG:

Triacylglycerol

TC:

Total cholesterol

TNF-α :

Tumor necrosis factor α

Vwf:

Von Willebrand factor

References

  1. Eilat-Adar S, Mete M, Fretts A, Fabsitz RR, Handeland V, Lee ET, Loria C, Xu J, Yeh J, Howard BV (2013) Dietary patterns and their association with cardiovascular risk factors in a population undergoing lifestyle changes: The Strong Heart Study. Nutr Metab Cardiovas 23:528–535

    Article  CAS  Google Scholar 

  2. Simopoulos AP (2006) Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother 60:502–507

    Article  PubMed  CAS  Google Scholar 

  3. Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    Article  PubMed  CAS  Google Scholar 

  4. Schmitz G, Ecker J (2008) The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res 47:147–155

    Article  PubMed  CAS  Google Scholar 

  5. Bagga D, Wang L, Farias-Eisner R, Glaspy JA, Reddy ST (2003) Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci USA 100:1751–1756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688

    Article  CAS  Google Scholar 

  7. Holub B, Mutch DM, Pierce GN, Rodriguez-Leyva D, Aliani M, Innis S, Yan W, Lamarche B, Couture P, Ma DW (2014) Proceedings from the 2013 Canadian Nutrition Society conference on advances in dietary fats and nutrition. Appl Physiol Nutr Metab 39:754–762

    Article  PubMed  Google Scholar 

  8. Lenihan-Geels G, Bishop KS, Ferguson LR (2013) Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients 5:1301–1315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kuhnt K, Degen C, Jaudszus A, Jahreis G (2012) Searching for health beneficial n-3 and n-6 fatty acids in plant seeds. Eur J Lipid Sci Tech 114:153–160

    Article  CAS  Google Scholar 

  10. Williams CM, Burdge G (2006) Long-chain n-3 PUFA: plant v. marine sources. Proc Nutr Soc 65:42–50

    Article  PubMed  CAS  Google Scholar 

  11. Umesha SS, Naidu KA (2012) Vegetable oil blends with alpha-linolenic acid rich garden cress oil modulate lipid metabolism in experimental rats. Food Chem 135:2845–2851

    Article  PubMed  CAS  Google Scholar 

  12. Riediger ND, Azordegan N, Harris-Janz S, Ma DW, Suh M, Moghadasian MH (2009) ‘Designer oils’ low in n-6:n-3 fatty acid ratio beneficially modifies cardiovascular risks in mice. Eur J Nutr 48:307–314

    Article  PubMed  CAS  Google Scholar 

  13. Song Z, Yang L, Shu G, Lu H, Sun G (2013) Effects of the n-6/n-3 polyunsaturated fatty acids ratio on postprandial metabolism in hypertriacylglycerolemia patients. Lipids Health Dis. 12:181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Victor VM, Rocha M, Sola E, Banuls C, Garcia-Malpartida K, Hernandez-Mijares A (2009) Oxidative stress, endothelial dysfunction and atherosclerosis. Curr Pharm Design 15:2988–3002

    Article  CAS  Google Scholar 

  15. Tietge UJ (2014) Hyperlipidemia and cardiovascular disease: inflammation, dyslipidemia, and atherosclerosis. Curr Opin Lipidol 25:94–95

    Article  PubMed  CAS  Google Scholar 

  16. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  PubMed  CAS  Google Scholar 

  17. Ooi EM, Ng TW, Watts GF, Barrett PH (2013) Dietary fatty acids and lipoprotein metabolism: new insights and updates. Curr Opin Lipidol 24:192–197

    Article  PubMed  CAS  Google Scholar 

  18. Jacobsen C (2010) Enrichment of foods with omega-3 fatty acids: a multidisciplinary challenge. Ann N Y Acad Sci 1190:141–150

    Article  PubMed  CAS  Google Scholar 

  19. Lee SP, Dart AM, Walker KZ, O’Dea K, Chin-Dusting JP, Skilton MR (2012) Effect of altering dietary n-6:n-3 PUFA ratio on cardiovascular risk measures in patients treated with statins: a pilot study. Br J Nutr 108:1280–1285

    Article  PubMed  CAS  Google Scholar 

  20. Kris-Etherton PM, Taylor DS, Yu-Poth S, Huth P, Moriarty K, Fishell V, Hargrove RL, Zhao G, Etherton TD (2000) Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr 71:179S–188S

    PubMed  CAS  Google Scholar 

  21. Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757

    Article  PubMed  Google Scholar 

  22. Lorente-Cebrian S, Costa AG, Navas-Carretero S, Zabala M, Martinez JA, Moreno-Aliaga MJ (2013) Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. J Physiol Biochem 69:633–651

    Article  PubMed  CAS  Google Scholar 

  23. Cascio G, Schiera G, Di Liegro I (2012) Dietary fatty acids in metabolic syndrome, diabetes and cardiovascular diseases. Curr Diabetes Rev 8:2–17

    Article  PubMed  CAS  Google Scholar 

  24. Fleming RM (2002) The effect of high-, moderate-, and low-fat diets on weight loss and cardiovascular disease risk factors. Prev Cardiol 5:110–118

    Article  PubMed  Google Scholar 

  25. van Bilsen M, Planavila A (2014) Fatty acids and cardiac disease: fuel carrying a message. Acta Physiol (Oxf) 211:476–490

    Article  CAS  Google Scholar 

  26. Riediger ND, Othman R, Fitz E, Pierce GN, Suh M, Moghadasian MH (2008) Low n-6:n-3 fatty acid ratio, with fish- or flaxseed oil, in a high fat diet improves plasma lipids and beneficially alters tissue fatty acid composition in mice. Eur J Nutr 47:153–160

    Article  PubMed  CAS  Google Scholar 

  27. Gillingham LG, Gustafson JA, Han SY, Jassal DS, Jones PJ (2011) High-oleic rapeseed (canola) and flaxseed oils modulate serum lipids and inflammatory biomarkers in hypercholesterolaemic subjects. Brit J Nutr 105:417–427

    Article  PubMed  CAS  Google Scholar 

  28. Zhao G, Etherton TD, Martin KR, West SG, Gillies PJ, Kris-Etherton PM (2004) Dietary alpha-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J Nutr 134:2991–2997

    PubMed  CAS  Google Scholar 

  29. Duan Y, Li F, Li L, Fan J, Sun X, Yin Y (2014) n-6:n-3 PUFA ratio is involved in regulating lipid metabolism and inflammation in pigs. Brit J Nutr 111:445–451

    Article  PubMed  CAS  Google Scholar 

  30. Li F, Duan Y, Li Y, Tang Y, Geng M, Oladele OA, Kim SW, Yin Y (2015) Effects of dietary n-6:n-3 PUFA ratio on fatty acid composition, free amino acid profile and gene expression of transporters in finishing pigs. Br J Nutr 113:739–748

    Article  PubMed  CAS  Google Scholar 

  31. Bemelmans WJ, Broer J, Feskens EJ, Smit AJ, Muskiet FA, Lefrandt JD, Bom VJ, May JF, Meyboom-de JB (2002) Effect of an increased intake of alpha-linolenic acid and group nutritional education on cardiovascular risk factors: the Mediterranean Alpha-linolenic Enriched Groningen Dietary Intervention (MARGARIN) study. Am J Clin Nutr 75:221–227

    PubMed  CAS  Google Scholar 

  32. Yao Z, Wang Y (2012) Apolipoprotein C-III and hepatic triglyceride-rich lipoprotein production. Curr Opin Lipidol 23:206–212

    Article  PubMed  CAS  Google Scholar 

  33. Zheng C, Khoo C, Furtado J, Sacks FM (2010) Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense low-density lipoprotein phenotype. Circulation 121:1722–1734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kawakami A, Aikawa M, Alcaide P, Luscinskas FW, Libby P, Sacks FM (2006) Apolipoprotein CIII induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells. Circulation 114:681–687

    Article  PubMed  CAS  Google Scholar 

  35. Maki KC, Bays HE, Dicklin MR, Johnson SL, Shabbout M (2011) Effects of prescription omega-3-acid ethyl esters, coadministered with atorvastatin, on circulating levels of lipoprotein particles, apolipoprotein CIII, and lipoprotein-associated phospholipase A2 mass in men and women with mixed dyslipidemia. J Clin Lipidol 5:483–492

    Article  PubMed  Google Scholar 

  36. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR (2002) Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 347:1557–1565

    Article  PubMed  CAS  Google Scholar 

  37. Calder PC (2010) Omega-3 fatty acids and inflammatory processes. Nutrients 2:355–374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lin S, Hou J, Xiang F, Zhang X, Che L, Lin Y, Xu S, Tian G, Zeng Q, Yu B, Zhang K, Chen D, Wu D, Fang Z (2013) Mammary inflammation around parturition appeared to be attenuated by consumption of fish oil rich in n-3 polyunsaturated fatty acids. Lipids Health Dis 12:190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Noori N, Dukkipati R, Kovesdy CP, Sim JJ, Feroze U, Murali SB, Bross R, Benner D, Kopple JD, Kalantar-Zadeh K (2011) Dietary omega-3 fatty acid, ratio of omega-6 to omega-3 intake, inflammation, and survival in long-term hemodialysis patients. Am J Kidney Dis 58:248–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Papadopoulos GA, Maes DG, Van Weyenberg S, van Kempen TA, Buyse J, Janssens GP (2009) Peripartal feeding strategy with different n-6: n-3 ratios in sows: effects on sows’ performance, inflammatory and periparturient metabolic parameters. Br J Nutr 101:348–357

    Article  PubMed  CAS  Google Scholar 

  41. Benson MK, Devi K (2009) Influence of omega-6/omega-3 rich dietary oils on lipid profile and antioxidant enzymes in normal and stressed rats. Indian J Exp Biol 47:98–103

    PubMed  CAS  Google Scholar 

  42. Montuschi P, Barnes PJ, Roberts LN (2004) Isoprostanes: markers and mediators of oxidative stress. Faseb J 18:1791–1800

    Article  PubMed  CAS  Google Scholar 

  43. Szuldrzynski K, Zalewski J, Machnik A, Zmudka K (2010) Elevated levels of 8-iso-prostaglandin F2alpha in acute coronary syndromes are associated with systemic and local platelet activation. Pol Arch Med Wewn 120:19–24

    PubMed  CAS  Google Scholar 

  44. Mendez L, Pazos M, Gallardo JM, Torres JL, Perez-Jimenez J, Nogues R, Romeu M, Medina I (2013) Reduced protein oxidation in Wistar rats supplemented with marine omega3 PUFAs. Free Radical Bio Med 55:8–20

    Article  CAS  Google Scholar 

  45. Salonen I, Huttunen K, Hirvonen MR, Dufva J, Groundstroem K, Dufva H, Pekkanen J, Salonen RO (2012) Serum myeloperoxidase is independent of the risk factors of atherosclerosis. Coron Artery Dis 23:251–258

    Article  PubMed  Google Scholar 

  46. Nicholls SJ, Hazen SL (2005) Myeloperoxidase and cardiovascular disease. Arterioscl Throm Vas 25:1102–1111

    Article  CAS  Google Scholar 

  47. Pan B, Yu B, Ren H, Willard B, Pan L, Zu L, Shen X, Ma Y, Li X, Niu C, Kong J, Kang S, Eugene CY, Pennathur S, Zheng L (2013) High-density lipoprotein nitration and chlorination catalyzed by myeloperoxidase impair its effect of promoting endothelial repair. Free Radical Bio Med 60:272–281

    Article  CAS  Google Scholar 

  48. Smith JD (2010) Myeloperoxidase, inflammation, and dysfunctional high-density lipoprotein. J Clin Lipidol 4:382–388

    Article  PubMed  PubMed Central  Google Scholar 

  49. Torrejon C, Jung UJ, Deckelbaum RJ (2007) n-3 Fatty acids and cardiovascular disease: actions and molecular mechanisms. Prostag Leukotr Ess 77:319–326

    Article  CAS  Google Scholar 

  50. Thum T, Borlak J (2004) Mechanistic role of cytochrome P450 monooxygenases in oxidized low-density lipoprotein-induced vascular injury: therapy through LOX-1 receptor antagonism? Circ Res 94:e1–e13

    Article  PubMed  Google Scholar 

  51. Lluis L, Taltavull N, Munoz-Cortes M, Sanchez-Martos V, Romeu M, Giralt M, Molinar-Toribio E, Torres JL, Perez-Jimenez J, Pazos M, Mendez L, Gallardo JM, Medina I, Nogues MR (2013) Protective effect of the omega-3 polyunsaturated fatty acids: Eicosapentaenoic acid/Docosahexaenoic acid 1:1 ratio on cardiovascular disease risk markers in rats. Lipids Health Dis. 12:140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kearns RJ, Hayek MG, Turek JJ, Meydani M, Burr JR, Greene RJ, Marshall CA, Adams SM, Borgert RC, Reinhart GA (1999) Effect of age, breed and dietary omega-6 (n-6): omega-3 (n-3) fatty acid ratio on immune function, eicosanoid production, and lipid peroxidation in young and aged dogs. Vet Immunol Immunop 69:165–183

    Article  CAS  Google Scholar 

  53. Yang TC, Chen YJ, Chang SF, Chen CH, Chang PY, Lu SC (2014) Malondialdehyde mediates oxidized LDL-induced coronary toxicity through the Akt-FGF2 pathway via DNA methylation. J Biomed Sci 21:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kondo T, Hirose M, Kageyama K (2009) Roles of oxidative stress and redox regulation in atherosclerosis. J Atheroscler Thromb 16:532–538

    Article  PubMed  CAS  Google Scholar 

  55. Shahar E, Folsom AR, Wu KK, Dennis BH, Shimakawa T, Conlan MG, Davis CE, Williams OD (1993) Associations of fish intake and dietary n-3 polyunsaturated fatty acids with a hypocoagulable profile. The Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler Thromb 13:1205–1212

    Article  PubMed  CAS  Google Scholar 

  56. Li F, Yang H, Duan Y, Yin Y (2011) Myostatin regulates preadipocyte differentiation and lipid metabolism of adipocyte via ERK1/2. Cell Biol Int 35:1141–1146

    Article  PubMed  CAS  Google Scholar 

  57. Tan B, Li X, Yin Y, Wu Z, Liu C, Tekwe CD, Wu G (2012) Regulatory roles for l-arginine in reducing white adipose tissue. Front Biosci (Landmark Ed) 17:2237–2246

    Article  CAS  Google Scholar 

  58. Yang H, Li F, Xiong X, Kong X, Zhang B, Yuan X, Fan J, Duan Y, Geng M, Li L, Yin Y (2013) Soy isoflavones modulate adipokines and myokines to regulate lipid metabolism in adipose tissue, skeletal muscle and liver of male Huanjiang mini-pigs. Mol Cell Endocrinol 365:44–51

    Article  PubMed  CAS  Google Scholar 

  59. Tan B, Yin Y, Liu Z, Tang W, Xu H, Kong X, Li X, Yao K, Gu W, Smith SB, Wu G (2011) Dietary l-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J Nutr Biochem 22:441–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China Youth Science Fund Project (No. 81001244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui Ju Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L.G., Song, Z.X., Yin, H. et al. Low n-6/n-3 PUFA Ratio Improves Lipid Metabolism, Inflammation, Oxidative Stress and Endothelial Function in Rats Using Plant Oils as n-3 Fatty Acid Source. Lipids 51, 49–59 (2016). https://doi.org/10.1007/s11745-015-4091-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4091-z

Keywords

Navigation