Skip to main content
Log in

Gut Microbial Metabolites of Polyunsaturated Fatty Acids Correlate with Specific Fecal Bacteria and Serum Markers of Metabolic Syndrome in Obese Women

  • Communication
  • Published:
Lipids

Abstract

The aim of this human study was to assess the influence of prebiotic-induced gut microbiota modulation on PUFA-derived bacterial metabolites production. Therefore, we analyzed the circulating fatty acid profile including CLA/CLnA in obese women treated during 3 months with inulin-type fructan prebiotics. In these patients, we had already determined gut microbiota composition by phylogenetic microarray and qPCR analysis of 16S rDNA. Some PUFA-derived bacterial metabolites were detected in the serum of obese patients. Despite the prebiotic-induced modulation of gut microbiota, including changes in CLA/CLnA-producing bacteria, the treatment did not impact significantly on the circulating level of these metabolites. However, some PUFA-derived bacterial metabolites were positively correlated with specific fecal bacteria (Bifidobacterium spp., Eubacterium ventriosum and Lactobacillus spp.) and inversely correlated with serum cholesterol (total, LDL, HDL). These correlations suggest a potential beneficial effect of some of these metabolites but this remains to be confirmed by further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

CLA:

Conjugated linoleic acid

CLnA:

Conjugated linolenic acid

FA:

Fatty acid

FAME:

Fatty acid methyl ester

HDL:

High density lipoprotein

HITChip:

Human Intestinal Tract Chip

ITF:

Inulin-type fructans

LDL:

Low density lipoprotein

PPAR:

Peroxisome proliferator-activated receptor

TAG:

Triacylglycerol

References

  1. Delzenne NM, Neyrinck AM, Cani PD (2013) Gut microbiota and metabolic disorders: how prebiotic can work? Br J Nutr 109(Suppl 2):S81–S85

    Article  CAS  PubMed  Google Scholar 

  2. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267

    Article  CAS  PubMed  Google Scholar 

  3. Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G (2006) Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 17:789–810

    Article  CAS  PubMed  Google Scholar 

  4. Meyer D, Stasse-Wolthuis M (2009) The bifidogenic effect of inulin and oligofructose and its consequences for gut health. Eur J Clin Nutr 63:1277–1289

    Article  CAS  PubMed  Google Scholar 

  5. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P (2009) Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 101:541–550

    Article  CAS  PubMed  Google Scholar 

  6. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco MJ, Leotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(Suppl 2):S1–S63

    Article  CAS  PubMed  Google Scholar 

  7. Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM, Bindels LB, de Vos WM, Gibson GR, Thissen JP, Delzenne NM (2013) Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62:1112–1121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. O’Shea EF, Cotter PD, Stanton C, Ross RP, Hill C (2012) Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int J Food Microbiol 152:189–205

    Article  CAS  PubMed  Google Scholar 

  9. Gorissen L, Raes K, Weckx S, Dannenberger D, Leroy F, De Vuyst L, De Smet S (2010) Production of conjugated linoleic acid and conjugated linolenic acid isomers by Bifidobacterium species. Appl Microbiol Biotechnol 87:2257–2266

    Article  CAS  PubMed  Google Scholar 

  10. Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94:138–145

    Article  CAS  PubMed  Google Scholar 

  11. Moya-Camarena SY, Vanden Heuvel JP, Blanchard SG, Leesnitzer LA, Belury MA (1999) Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARalpha. J Lipid Res 40:1426–1433

    CAS  PubMed  Google Scholar 

  12. Belurya MA, Moya-Camarena SY, Lu M, Shi L, Leesnitzer LM, Blanchard SG (2002) Conjugated linoleic acid is an activator and ligand for peroxisome proliferator-activated receptor-gamma (PPARγ). Nutr Res 22:817–824

    Article  Google Scholar 

  13. Plourde M, Jew S, Cunnane SC, Jones PJ (2008) Conjugated linoleic acids: why the discrepancy between animal and human studies? Nutr Rev 66:415–421

    Article  PubMed  Google Scholar 

  14. Houseknecht KL, Vanden Heuvel JP, Moya-Camarena SY, Portocarrero CP, Peck LW, Nickel KP, Belury MA (1998) Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the Zucker diabetic fatty fa/fa rat. Biochem Biophys Res Commun 244:678–682

    Article  CAS  PubMed  Google Scholar 

  15. Kelley NS, Hubbard NE, Erickson KL (2007) Conjugated linoleic acid isomers and cancer. J Nutr 137:2599–2607

    CAS  PubMed  Google Scholar 

  16. Reynolds CM, Roche HM (2010) Conjugated linoleic acid and inflammatory cell signalling. Prostaglandins Leukot Essent Fatty Acids 82:199–204

    Article  CAS  PubMed  Google Scholar 

  17. Wang YW, Jones PJ (2004) Conjugated linoleic acid and obesity control: efficacy and mechanisms. Int J Obes Relat Metab Disord 28:941–955

    Article  CAS  PubMed  Google Scholar 

  18. Clement L, Poirier H, Niot I, Bocher V, Guerre-Millo M, Krief S, Staels B, Besnard P (2002) Dietary trans-10,cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. J Lipid Res 43:1400–1409

    Article  CAS  PubMed  Google Scholar 

  19. Onakpoya IJ, Posadzki PP, Watson LK, Davies LA, Ernst E (2012) The efficacy of long-term conjugated linoleic acid (CLA) supplementation on body composition in overweight and obese individuals: a systematic review and meta-analysis of randomized clinical trials. Eur J Nutr 51:127–134

    Article  CAS  PubMed  Google Scholar 

  20. Martin JC, Valeille K (2002) Conjugated linoleic acids: all the same or to everyone its own function? Reprod Nutr Dev 42:525–536

    Article  CAS  PubMed  Google Scholar 

  21. Loscher CE, Draper E, Leavy O, Kelleher D, Mills KH, Roche HM (2005) Conjugated linoleic acid suppresses NF-kappa B activation and IL-12 production in dendritic cells through ERK-mediated IL-10 induction. J Immunol 175:4990–4998

    Article  CAS  PubMed  Google Scholar 

  22. Moloney F, Toomey S, Noone E, Nugent A, Allan B, Loscher CE, Roche HM (2007) Antidiabetic effects of cis-9,trans-11-conjugated linoleic acid may be mediated via anti-inflammatory effects in white adipose tissue. Diabetes 56:574–582

    Article  CAS  PubMed  Google Scholar 

  23. Poirier H, Shapiro JS, Kim RJ, Lazar MA (2006) Nutritional supplementation with trans-10,cis-12-conjugated linoleic acid induces inflammation of white adipose tissue. Diabetes 55:1634–1641

    Article  CAS  PubMed  Google Scholar 

  24. Park Y, Storkson JM, Albright KJ, Liu W, Pariza MW (1999) Evidence that the trans-10,cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 34:235–241

    Article  CAS  PubMed  Google Scholar 

  25. Tricon S, Burdge GC, Kew S, Banerjee T, Russell JJ, Jones EL, Grimble RF, Williams CM, Yaqoob P, Calder PC (2004) Opposing effects of cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid on blood lipids in healthy humans. Am J Clin Nutr 80:614–620

    CAS  PubMed  Google Scholar 

  26. Riserus U, Arner P, Brismar K, Vessby B (2002) Treatment with dietary trans-10,cis-12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care 25:1516–1521

    Article  CAS  PubMed  Google Scholar 

  27. Tricon S, Yaqoob P (2006) Conjugated linoleic acid and human health: a critical evaluation of the evidence. Curr Opin Clin Nutr Metab Care 9:105–110

    Article  CAS  PubMed  Google Scholar 

  28. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  29. Christie WW, Dobson G, Adlof RO (2007) A practical guide to the isolation, analysis and identification of conjugated linoleic acid. Lipids 42:1073–1084

    Article  CAS  PubMed  Google Scholar 

  30. Precht D, Molkentin J, McGuire MA, McGuire MK, Jensen RG (2001) Overestimates of oleic and linoleic acid contents in materials containing trans fatty acids and analyzed with short packed gas chromatographic columns. Lipids 36:213–216

    Article  CAS  PubMed  Google Scholar 

  31. Kramer JK, Hernandez M, Cruz-Hernandez C, Kraft J, Dugan ME (2008) Combining results of two GC separations partly achieves determination of all cis and trans 16:1, 18:1, 18:2 and 18:3 except CLA isomers of milk fat as demonstrated using Ag-ion SPE fractionation. Lipids 43:259–273

    Article  CAS  PubMed  Google Scholar 

  32. Ritzenthaler KL, McGuire MK, Falen R, Shultz TD, Dasgupta N, McGuire MA (2001) Estimation of conjugated linoleic acid intake by written dietary assessment methodologies underestimates actual intake evaluated by food duplicate methodology. J Nutr 131:1548–1554

    CAS  PubMed  Google Scholar 

  33. Neyrinck AM, Possemiers S, Druart C, Van de Wiele T, De Backer F, Cani PD, Larondelle Y, Delzenne NM (2011) Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS One 6:e20944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Lahti L, Salonen A, Kekkonen RA, Salojarvi J, Jalanka-Tuovinen J, Palva A, Oresic M, de Vos WM (2013) Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data. Peer J 1:e32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Devillard E, McIntosh FM, Duncan SH, Wallace RJ (2007) Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. J Bacteriol 189:2566–2570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Or-Rashid MM, Alzahal O, McBride BW (2011) Comparative studies on the metabolism of linoleic acid by rumen bacteria, protozoa, and their mixture in vitro. Appl Microbiol Biotechnol 89:387–395

    Article  CAS  PubMed  Google Scholar 

  37. Chilliard Y, Glasser F, Ferlay A, Bernard L, Rouel J, Doreau M (2007) Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur J Lipid Sci Technol 109:828–855

    Article  CAS  Google Scholar 

  38. McIntosh FM, Shingfield KJ, Devillard E, Russell WR, Wallace RJ (2009) Mechanism of conjugated linoleic acid and vaccenic acid formation in human faecal suspensions and pure cultures of intestinal bacteria. Microbiology 155:285–294

    Article  CAS  PubMed  Google Scholar 

  39. Park HG, Cho HT, Song MC, Kim SB, Kwon EG, Choi NJ, Kim YJ (2012) Production of a conjugated fatty acid by Bifidobacterium breve LMC520 from alpha-linolenic acid: conjugated linolenic acid (CLnA). J Agric Food Chem 60:3204–3210

    Article  CAS  PubMed  Google Scholar 

  40. Alonso L, Cuesta EP, Gilliland SE (2003) Production of free conjugated linoleic acid by Lactobacillus acidophilus and Lactobacillus casei of human intestinal origin. J Dairy Sci 86:1941–1946

    Article  CAS  PubMed  Google Scholar 

  41. Bassett CM, Edel AL, Patenaude AF, McCullough RS, Blackwood DP, Chouinard PY, Paquin P, Lamarche B, Pierce GN (2010) Dietary vaccenic acid has antiatherogenic effects in LDLr-/- mice. J Nutr 140:18–24

    Article  CAS  PubMed  Google Scholar 

  42. Oh K, Hu FB, Manson JE, Stampfer MJ, Willett WC (2005) Dietary fat intake and risk of coronary heart disease in women: 20 years of follow-up of the nurses’ health study. Am J Epidemiol 161:672–679

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank L. De Vuyst who helped us to quantify Roseburia spp. C.D. benefits from a Danone Institute grant. P.D.C. is a Research Associate from the FRS-FNRS (Fonds de la Recherche Scientifique, Belgium). PDC and NMD are recipients of FSR and FRSM subsidies (Fonds spéciaux de recherches, UCL, Belgium; Fonds de la recherche scientifique médicale, Belgium). PDC is a recipient of ERC Starting grant. This project was supported by a FNRS grant (No. 1.5.095.09F).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie M. Delzenne.

About this article

Cite this article

Druart, C., Dewulf, E.M., Cani, P.D. et al. Gut Microbial Metabolites of Polyunsaturated Fatty Acids Correlate with Specific Fecal Bacteria and Serum Markers of Metabolic Syndrome in Obese Women. Lipids 49, 397–402 (2014). https://doi.org/10.1007/s11745-014-3881-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3881-z

Keywords

Navigation