Skip to main content
Log in

Consumption of Dietary n-3 Fatty Acids Decreases Fat Deposition and Adipocyte Size, but Increases Oxidative Susceptibility in Broiler Chickens

  • Original Article
  • Published:
Lipids

Abstract

The aim of this study was to determine the effects of an omega-3 (n-3) polyunsaturated fatty acid (PUFA)-enriched diet on animal fat depots and lipid oxidation in the blood and meat of broiler chickens. Abdominal fat pad (AFP), sartorius muscle and liver histology were used to assess the effect of the dietary fat on animal lipid depots. A total of 60 female broilers (14 days old) was randomly divided into two groups which received a diet containing 10 % of tallow (S diet), rich in saturated fatty acids or 10 % of a blend of fish oil and linseed oil (N3 diet), rich in n-3 PUFA from 14 to 50 days of life. Both absolute and relative weights of AFP in N3 animals were lower than in the S group (P < 0.05). These results paralleled with a lower adipocyte mean area (P < 0.001) obtained in N3-fed animals, leading to a higher number of fat cells per unit of surface measured (383.4 adipocytes/mm2 vs. 273.7 adipocytes/mm2). Similarly, fat content and the intramuscular fat-occupied area of muscle were lower in N3 (P < 0.0001) than in the S-fed birds. Neither macroscopic nor microscopic differences were observed in the liver. The inclusion of dietary n-3 PUFA increased meat and erythrocyte oxidation susceptibility; however, the erythrocytes from the S group were less resistant to osmotic changes. Results indicate that feeding an n-3 PUFA diet influences fat distribution and the oxidative status of broiler chickens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AFP:

Abdominal fat pad

ALA:

Alpha-linolenic acid (18:3n-3)

DHA:

Docosahexaenoic acid (22:6n-3)

EPA:

Eicosapentaenoic acid (20:5n-3)

FA:

Fatty acid(s)

IMF:

Intramuscular fat

MDA:

Malonaldehyde

MUFA:

Monounsaturated fatty acid(s)

n-3:

Omega-3

PUFA:

Polyunsaturated fatty acid(s)

SFA:

Saturated fatty acid(s)

TBARS:

Thiobarbituric acid-reactive substances

References

  1. Hossain P, Kawar B, El Nahas M (2007) Obesity and diabetes in the developing world—a growing challenge. N Engl J Med 356(3):213–215

    Article  PubMed  CAS  Google Scholar 

  2. Laparra JM, Sanz Y (2010) Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res 61(3):219–225

    Article  PubMed  CAS  Google Scholar 

  3. Mozaffarian D, Wu JH (2012) (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary? J Nutr 142(3):614S–625S

    Article  PubMed  CAS  Google Scholar 

  4. Tu W, Cook-Johnson R, James M, Mühlhäusler B, Gibson R (2010) Omega-3 long chain fatty acid synthesis is regulated more by substrate levels than gene expression. Prostaglandins Leukot Essent Fatty Acids 83:61–68

    Article  PubMed  CAS  Google Scholar 

  5. Anonymous (2004) Lipids as determinants of cell function and human health. In: Proceedings of the 6th congress of the international society for the study of fatty acids and lipids (ISSFAL). Brighton, United Kingdom, 26 June–1 July 2004. Lipids 39(11):1043–1146

  6. Sioen I, Devroe J, Inghels D, Terwecoren R, De Henauw S (2010) The influence of n-3 PUFA supplements and n-3 PUFA enriched foods on the n-3 LC PUFA intake of Flemish women. Lipids 45(4):313–320

    Article  PubMed  CAS  Google Scholar 

  7. Food and Agriculture Organization of the United Nations: Statistics Division 2009. http://faostat.fao.org/

  8. Villaverde C, Baucells MD, Cortinas L, Hervera M, Barroeta AC (2005) Chemical composition and energy content of chickens in response to different levels of dietary polyunsaturated fatty acids. Arch Anim Nutr 59(4):281–292

    Article  PubMed  CAS  Google Scholar 

  9. Cortinas L, Barroeta A, Villaverde C, Galobart J, Guardiola F, Baucells MD (2005) Influence of the dietary polyunsaturation level on chicken meat quality: lipid oxidation. Poult Sci 84(1):48–55

    PubMed  CAS  Google Scholar 

  10. Thorlaksdottir AY, Skuladottir GV, Petursdottir AL, Tryggvadottir L, Ogmundsdottir HM, Eyfjord JE, Jonsson JJ, Hardardottir I (2006) Positive association between plasma antioxidant capacity and n-3 PUFA in red blood cells from women. Lipids 41(2):119–125

    Article  PubMed  CAS  Google Scholar 

  11. Oriani G, Corino C, Pastorelli G, Pantaleo L, Ritieni A, Salvatori G (2001) Oxidative status of plasma and muscle in rabbits supplemented with dietary vitamin E. J Nutr Biochem 12(3):138–143

    Article  PubMed  CAS  Google Scholar 

  12. Tres A, Bou R, Codony R, Guardiola F (2009) Dietary n-6- or n-3-rich vegetable fats and alpha-tocopheryl acetate: effects on fatty acid composition and stability of rabbit plasma, liver and meat. Animal 3(10):1408–1419

    Article  PubMed  CAS  Google Scholar 

  13. Sanz M, Flores A, De Ayala PP, Lopez-Bote CJ (1999) Higher lipid accumulation in broilers fed on saturated fats than in those fed on unsaturated fats. Br Poult Sci 40(1):95–101

    Article  PubMed  CAS  Google Scholar 

  14. Crespo N, Esteve-Garcia E (2002) Nutrient and fatty acid deposition in broilers fed different dietary fatty acid profiles. Poult Sci 81(10):1533–1542

    PubMed  CAS  Google Scholar 

  15. Villaverde C, Baucells MD, Cortinas L, Barroeta AC (2006) Effects of dietary concentration and degree of polyunsaturation of dietary fat on endogenous synthesis and deposition of fatty acids in chickens. Br Poult Sci 47(2):173–179

    Article  PubMed  CAS  Google Scholar 

  16. Ferrini G, Baucells MD, Esteve-Garcia E, Barroeta AC (2008) Dietary polyunsaturated fat reduces skin fat as well as abdominal fat in broiler chickens. Poult Sci 87(3):528–535

    Article  PubMed  CAS  Google Scholar 

  17. Wongsuthavas S, Yuangklang C, Vasupen K, Mitchaothai J, Alhaidary A, Mohamed HE, Beynen AC (2011) Fatty acid and energy metabolism in broiler chickens fed diets containing either beef tallow or an oil blend. J Anim Physiol Anim Nutr (Berl) 95(2):228–235

    Article  CAS  Google Scholar 

  18. Mourot J, Hermier D (2001) Lipids in monogastric animal meat. Reprod Nutr Dev 41(2):109–118

    Article  PubMed  CAS  Google Scholar 

  19. Griffin HD, Windsor D, Whitehead CC (1991) Changes in lipoprotein metabolism and body composition in chickens in response to divergent selection for plasma very low density lipoprotein concentration. Br Poult Sci 32(1):195–201

    Article  PubMed  CAS  Google Scholar 

  20. FEDNA (Fundación Española para el Desarrollo de la Nutrición Animal) (2008) Necesidades nutricionales para avicultura: pollos de carne y aves de puesta

  21. AOAC (2005) Official methods of analysis of AOAC international. AOAC International, Gaithersburg

    Google Scholar 

  22. Bourdillon A, Carre B, Conan L, Francesch M, Fuentes M, Huyghebaert G, Janssen WM, Leclercq B, Lessire M, McNab J (1990) European reference method of in vivo determination of metabolisable energy in poultry: reproducibility, effect of age, comparison with predicted values. Br Poult Sci 31(3):567–576

    Article  PubMed  CAS  Google Scholar 

  23. Moriguchi T, Takasugi N, Itakura Y (2001) The effects of aged garlic extract on lipid peroxidation and the deformability of erythrocytes. J Nutr 131(3s):1016S–1019S

    PubMed  CAS  Google Scholar 

  24. Beuge J, Aust S (1987) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  Google Scholar 

  25. Grau A, Guardiola F, Boatella J, Barroeta A, Codony R (2000) Measurement of 2-thiobarbituric acid values in dark chicken meat through derivative spectrophotometry: influence of various parameters. J Agric Food Chem 48(4):1155–1159

    Article  PubMed  CAS  Google Scholar 

  26. Surkhija P, Palmquist D (1988) Rapid method of determination of total FA content and composition of feedstuffs and faeces. J Agric Food Chem 36:1202–1206

    Article  Google Scholar 

  27. Carrapiso AI, Luisa Timon MA, Jesus Petron MA, Tejeda JF, Garcia C (2000) In situ transesterification of fatty acids from Iberian pig subcutaneous adipose tissue. Meat Sci 56(2):159–164

    Article  PubMed  CAS  Google Scholar 

  28. Corino C, Di Giancamillo A, Rossi R, Domeneghini C (2005) Dietary conjugated linoleic acid affects morphofunctional and chemical aspects of subcutaneous adipose tissue in heavy pigs. J Nutr 135(6):1444–1450

    PubMed  CAS  Google Scholar 

  29. Chen HC, Farese RV Jr (2002) Determination of adipocyte size by computer image analysis. J Lipid Res 43(6):986–989

    PubMed  CAS  Google Scholar 

  30. Chartrin P, Schiavone A, Bernadert M, Guy G, Mourot J, Duclos M, Baéza E (2005) Effect of genotype and overfeeding on lipid deposition in myofibres and intramuscular adipocytes of breast and thigh muscles of ducks. Reprod Nutr Dev 45:87–99

    Article  PubMed  CAS  Google Scholar 

  31. Sealls W, Gonzalez M, Brosnan MJ, Black PN, DiRusso CC (2008) Dietary polyunsaturated fatty acids (C18:2 omega6 and C18:3 omega3) do not suppress hepatic lipogenesis. Biochim Biophys Acta 1781(8):406–414

    Article  PubMed  CAS  Google Scholar 

  32. SAS 9.2 (2010) SAS Institute Inc. Cary, NC, USA

  33. Crespo N, Esteve-Garcia E (2002) Dietary linseed oil produces lower abdominal fat deposition but higher de novo fatty acid synthesis in broiler chickens. Poult Sci 81(10):1555–1562

    PubMed  CAS  Google Scholar 

  34. Crespo N, Esteve-Garcia E (2001) Dietary fatty acid profile modifies abdominal fat deposition in broiler chickens. Poult Sci 80(1):71–78

    PubMed  CAS  Google Scholar 

  35. Villaverde C, Cortinas L, Barroeta AC, Martin-Orue SM, Baucells MD (2004) Relationship between dietary unsaturation and vitamin E in poultry. J Anim Physiol Anim Nutr (Berl) 88(3–4):143–149

    Article  CAS  Google Scholar 

  36. Wongsuthavas S, Yuangklang C, Wittayakun S, Vasupen K, Mitchaothai J, Srenanual P, Beynen A (2007) Dietary soybean oil, but not krabok oil, diminishes abdominal fat deposition in broiler chickens. Int J Poult Sci 6(11):792–795

    Article  Google Scholar 

  37. Wongsuthavas S, Terapuntuwat S, Wongsrikeaw W, Katawatin S, Yuangklang C, Beynen AC (2008) Influence of amount and type of dietary fat on deposition, adipocyte count and iodine number of abdominal fat in broiler chickens. J Anim Physiol Anim Nutr (Berl) 92(1):92–98

    CAS  Google Scholar 

  38. Sanz M, Lopez-Bote CJ, Flores A, Carmona JM (2000) Effect of the inclusion time of dietary saturated and unsaturated fats before slaughter on the accumulation and composition of abdominal fat in female broiler chickens. Poult Sci 79(9):1320–1325

    PubMed  CAS  Google Scholar 

  39. Newman RE, Bryden WL, Fleck E, Ashes JR, Buttemer WA, Storlien LH, Downing JA (2002) Dietary n-3 and n-6 fatty acids alter avian metabolism: metabolism and abdominal fat deposition. Br J Nutr 88(1):11–18

    Article  PubMed  CAS  Google Scholar 

  40. Sanz M, Lopez-Bote CJ, Menoyo D, Bautista JM (2000) Abdominal fat deposition and fatty acid synthesis are lower and beta-oxidation is higher in broiler chickens fed diets containing unsaturated rather than saturated fat. J Nutr 130(12):3034–3037

    PubMed  CAS  Google Scholar 

  41. Ferrini G, Manzanilla E, Menoyo D, Esteve-Garcia E, Baucells M, Barroeta A (2010) Effects of dietary n-3 fatty acids in fat metabolism and thyroid hormone levels when compared to dietary saturated fatty acids in chickens. Livest Sci 131:287–291

    Article  Google Scholar 

  42. Nahashon S, Briles C, Louis S, Bartlett J (2000) Performance and adipose cellularity of female progeny of White Plymouth Rock dams and commercial broiler breeder sires. J Anim Feed Sci 9:379–389

    Google Scholar 

  43. Fickova M, Hubert P, Cremel G, Leray C (1998) Dietary (n-3) and (n-6) polyunsaturated fatty acids rapidly modify fatty acid composition and insulin effects in rat adipocytes. J Nutr 128(3):512–519

    PubMed  CAS  Google Scholar 

  44. Pfaff F, Austic R (1976) Influence of diet on development of the abdominal fat pad in the pullet. J Nutr 106:443–450

    CAS  Google Scholar 

  45. Cartwright AL (1991) Adipose cellularity in Gallus domesticus: investigations to control body composition in growing chickens. J Nutr 121(9):1486–1497

    PubMed  CAS  Google Scholar 

  46. Scaife JR, Moyo J, Galbraith H, Michie W, Campbell V (1994) Effect of different dietary supplemental fats and oils on the tissue fatty acid composition and growth of female broilers. Br Poult Sci 35(1):107–118

    Article  PubMed  CAS  Google Scholar 

  47. Kirchgessner M, Ristic M, Kreuzer M, Roth F (1993) Inclusion of fats with high quantities of free fatty acids in broiler diets. 2. Growth as well as quality of carcass, meat and fat as affected by the stepwise substitution of saturated by unsaturated fatty acids. Archiv für Geflügelkunde 57:265–274

    CAS  Google Scholar 

  48. Feoli AM, Roehrig C, Rotta LN, Kruger AH, Souza KB, Kessler AM, Renz SV, Brusque AM, Souza DO, Perry ML (2003) Serum and liver lipids in rats and chicks fed with diets containing different oils. Nutrition 19(9):789–793

    Article  PubMed  CAS  Google Scholar 

  49. Talahalli RR, Vallikannan B, Sambaiah K, Lokesh BR (2010) Lower efficacy in the utilization of dietary ALA as compared to preformed EPA + DHA on long chain n-3 PUFA levels in rats. Lipids 45(9):799–808

    Article  PubMed  CAS  Google Scholar 

  50. Saadoun A, Leclercq B (1987) In vivo lipogenesis of genetically lean and fat chickens: effects of nutritional state and dietary fat. J Nutr 117(3):428–435

    PubMed  CAS  Google Scholar 

  51. Poureslami R, Raes K, Turchini GM, Huyghebaert G, De Smet S (2010) Effect of diet, sex and age on fatty acid metabolism in broiler chickens: n-3 and n-6 PUFA. Br J Nutr 104(2):189–197

    Article  PubMed  CAS  Google Scholar 

  52. Hodge J, Sanders K, Sinclair A (1993) Differential utilization of eicosapentaenoic acid and docosahexaenoic acid in human plasma. Lipids 61:525–531

    Article  Google Scholar 

  53. Ajuyah A, Lee K, Hardin R, Sim J (1991) Changes in the yield and in the fatty acid composition of whole carcass and selected meat portions of broiler chickens fed full-fat oil seeds. Poult Sci 70:2304–2314

    Article  CAS  Google Scholar 

  54. Racanicci A, Menten J, Regitano-d’Arce M, Torres E, Pino L, Pedroso AA (2008) Dietary oxidized poultry offal fat: broiler performance and oxidative stability of thigh meat during chilled storage. Rev Bras Cienc Avic 10:29–35

    Article  Google Scholar 

  55. Schilling MW, Battula V, Loar RE II, Jackson V, Kin S, Corzo A (2010) Dietary inclusion level effects of distillers dried grains with solubles on broiler meat quality. Poult Sci 89(4):752–760

    Article  PubMed  CAS  Google Scholar 

  56. Cools A, Maes D, Papadopoulos G, Vandermeiren JA, Meyer E, Demeyere K, De Smet S, Janssens GP (2011) Dose–response effect of fish oil substitution in parturition feed on erythrocyte membrane characteristics and sow performance. J Anim Physiol Anim Nutr (Berl) 95(1):125–136

    Article  CAS  Google Scholar 

  57. Smith J, Alford J (1968) Action of microorganisms on the peroxide and carbonyls of rancid fat. J Food Sci 33:93–97

    Article  CAS  Google Scholar 

  58. Siener R, Alteheld B, Terjung B, Junghans B, Bitterlich N, Stehle P, Metzner C (2010) Change in the fatty acid pattern of erythrocyte membrane phospholipids after oral supplementation of specific fatty acids in patients with gastrointestinal diseases. Eur J Clin Nutr 64(4):410–418

    Article  PubMed  CAS  Google Scholar 

  59. Sengupta A, Ghosh M (2011) Integrity of erythrocytes of hypercholesterolemic and normocholesterolemic rats during ingestion of different structured lipids. Eur J Nutr 50(6):411–419

    Article  PubMed  CAS  Google Scholar 

  60. Brito MA, Silva RF, Brites D (2002) Bilirubin induces loss of membrane lipids and exposure of phosphatidylserine in human erythrocytes. Cell Biol Toxicol 18(3):181–192

    Article  PubMed  CAS  Google Scholar 

  61. Ferreri C, Angelini F, Chatgilialoglu C, Dellonte S, Moschese V, Rossi P, Chini L (2005) Trans fatty acids and atopic eczema/dermatitis syndrome: the relationship with a free radical cis–trans isomerization of membrane lipids. Lipids 40(7):661–667

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Education and Science of the Spanish Government (CYCIT project: AGL2007-65898) and by a FPI research grant. This manuscript had been proofread by Mr. Chuck Simmons, a native English-speaking instructor of English of the Universitat Autònoma de Barcelona (UAB).

Conflict of interest

All authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemma González-Ortiz.

About this article

Cite this article

González-Ortiz, G., Sala, R., Cánovas, E. et al. Consumption of Dietary n-3 Fatty Acids Decreases Fat Deposition and Adipocyte Size, but Increases Oxidative Susceptibility in Broiler Chickens. Lipids 48, 705–717 (2013). https://doi.org/10.1007/s11745-013-3785-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-013-3785-3

Keywords

Navigation