Skip to main content
Log in

trans-10,cis-12 Conjugated Linoleic Acid Improved Growth Performance, Reduced Lipid Deposition and Influenced CPT I Kinetic Constants of Juvenile Synechogobius hasta

  • Original Article
  • Published:
Lipids

Abstract

trans-10,cis-12 (t10c12) Conjugated linoleic acid (CLA) reduced body lipid deposition in various experimental animals, but the mechanisms involved were still emerging. Carnitine palmitoyltransferase I (CPT I) catalyzes an important regulatory step in lipid metabolism. At present, no studies, to our knowledge, have evaluated the kinetic constants influenced by dietary CLA in fish. In the present study, we tested the hypothesis that changes in body lipid content in fish as a response to dietary t10c12 CLA was related to the change of CPT I kinetic constants [Michaelis constant (K m), maximal velocity and catalytic efficiency for carnitine and palmitoyl-CoA]. Juvenile Synechogobius hasta were fed three experimental diets with fish oil replaced with 0 (control), 1, or 2 % t10c12 CLA for 8 weeks. Weight gain, specific growth rate and protein efficiency rate increased with dietary t10c12 CLA level. Dietary t10c12 CLA addition significantly reduced lipid contents both in liver and muscle. Dietary CLA addition also improved CPT I activities in muscle but did not significantly influence hepatic CPT I activity. CPT I kinetic parameters (K m, V max and catalytic efficiency) were significantly influenced by t10c12 CLA. CPT I catalytic efficiencies with carnitine and palmitoyl-CoA as substrates were higher in muscle and liver of fish fed increasing t10c12 CLA. For the first time, the findings demonstrated effect of dietary CLA addition on CPT I kinetics in fish and supported our starting hypothesis that dietary t10c12 CLA addition induced alterations in CPT I kinetic constants of muscle and liver. Increased CPT I catalytic efficiency might be the main reason for reduced lipid deposition in these tissues by dietary t10c12 CLA supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CLA:

Conjugated linoleic acid

CPT I:

Carnitine palmitoyltransferase I

FA:

Fatty acid

FBW:

Final body weight

FCR:

Feed conversion rate

FI:

Feed intake

IBW:

Initial body weight

MIB:

Mitochondrial isolation buffer

PER:

Protein efficiency rate

PUFA:

Polyunsaturated fatty acid

SGR:

Specific growth rate

SR:

Survival rate

TAG:

Triacylglycerol

WG:

Weight gain

References

  1. Pariza MW, Park Y, Cook M (2001) The biologically active isomers of conjugated linoleic acid. Prog Lipid Res 40:283–298

    Article  PubMed  CAS  Google Scholar 

  2. West DB, Delany JP, Camet PM, Blohm F, Truett AA, Scimeca J (1998) Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol 275:R667–R672

    PubMed  CAS  Google Scholar 

  3. deDeckere DA, van Amelsvoort JM, McNeill GP, Jones P (1999) Effects of conjugated linoleic acid (CLA) isomers on lipid levels and peroxisome proliferation in the hamster. Br J Nutr 82:309–317

    CAS  Google Scholar 

  4. Twibell RG, Watkins BA, Rogers L, Brown PB (2000) Effects of dietary conjugated linoleic acids on hepatic and muscle lipids in hybrid striped bass. Lipids 35:155–161

    Article  PubMed  CAS  Google Scholar 

  5. Twibell RG, Watkins BA, Brown PB (2001) Dietary conjugated linoleic acids and lipid source alter fatty acid composition of juvenile yellow perch Perca flavescens. J Nutr 131:2322–2328

    PubMed  CAS  Google Scholar 

  6. Figueiredo-Silva AC, Rema P, Bandarra NM, Nunes ML, Valente LMP (2005) Effects of dietary conjugated linoleic acid on growth, nutrient utilization, body composition, and hepatic lipogenesis in rainbow trout juveniles (Oncorhynchus mykiss). Aquaculture 248:163–172

    Article  CAS  Google Scholar 

  7. Kennedy SR, Leaver MJ, Campbell PJ, Zheng X, Dick JR, Tocher DR (2006) Influence of dietary oil content and conjugated linoleic acid (CLA) on lipid metabolism enzyme activities and gene expression in tissues of Atlantic salmon (Salmo salar L.). Lipids 41:423–436

    Article  PubMed  CAS  Google Scholar 

  8. Leaver MJ, Tocher DR, Obach A, Jensen L, Henderson RJ, Porter AR, Krey G (2006) Effect of dietary conjugated linoleic acid (CLA) on lipid composition, metabolism and gene expression in Atlantic salmon (Salmo salar) tissues. Comp Biochem Physiol 145A:258–267

    CAS  Google Scholar 

  9. Tan XY, Luo Z, Xie P, Li XD, Liu XJ, Xi WQ (2010) Effect of dietary conjugated linoleic acid (CLA) on growth performance, body composition and hepatic intermediary metabolism in juvenile yellow catfish Pelteobagrus fulvidraco. Aquaculture 310:186–191

    Article  CAS  Google Scholar 

  10. Luo Z, Tan XY, Liu CX, Li XD, Liu XJ, Xi WQ (2012) Effect of dietary conjugated linoleic acid levels on growth performance, muscle fatty acid profile, hepatic intermediary metabolism and antioxidant responses in genetically improved farmed tilapia strain of Nile tilapia Oreochromis niloticus. Aquacult Res 43:1392–1403

    Article  CAS  Google Scholar 

  11. Metges C, Lehmann L, Boeuf S, Petzke KJ, Muller A, Rickert R, Franke W, Steinhart H, Nurnberg G, Klaus S (2003) cis-9,trans-11 and trans-10,cis-12 CLA affect lipid metabolism differently in primary white and brown adipocytes of Djungarian hamsters. Lipids 38:1133–1142

    Article  PubMed  CAS  Google Scholar 

  12. Zabala A, Churruca I, Macarulla MT, Rodriguez VM, Fernandez-Quintela A, Martinez JA, Portillo MP (2004) The trans-10,cis-12 isomer of conjugated linoleic acid reduces hepatic triacylglycerol content without affecting lipogenic enzymes in hamsters. Br J Nutr 92:383–389

    Article  PubMed  CAS  Google Scholar 

  13. Kim JH, Kim J, Park Y (2012) trans-10,cis-12 conjugated linoleic acid enhances endurance capacity by increasing fatty acid oxidation and reducing glycogen utilization in mice. Lipids 47:855–863

    Article  PubMed  CAS  Google Scholar 

  14. Belury MA, Mahon A, Banni S (2003) The conjugated linoleic acid (CLA) isomer, t10c12-CLA, is inversely associated with changes in body weight and serum leptin in subjects with type 2 diabetes mellitus. J Nutr 133:257S–260S

    PubMed  Google Scholar 

  15. McGarry JD, Brown NF (1997) The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 244:1–14

    Article  PubMed  CAS  Google Scholar 

  16. Zammit VA, Fraser F, Orstorphine CG (1997) Regulation of mitochondrial outer-membrane carnitine palmitoyltransferase (CPT I): role of membrane-topology. Adv Enzyme Regul 37:295–317

    Article  PubMed  CAS  Google Scholar 

  17. Kerner J, Hoppel C (2000) Fatty acid import into mitochondria. Biochim Biophys Acta 1486:1–17

    Article  PubMed  CAS  Google Scholar 

  18. Morash AJ, McClelland GB (2011) Regulation of carnitine palmitoyltransferase (CPT) I during fasting in rainbow trout (Oncorhynchus mykiss) promotes increased mitochondrial fatty acid oxidation. Physiol Biochem Zool 84(6):625–633

    Article  PubMed  CAS  Google Scholar 

  19. Liu XJ, Luo Z, Xiong BX, Liu X, Zhao YH, Hu GF, Lv GJ (2010) Effect of waterborne copper exposure on growth, hepatic enzymatic activities and histology in Synechogobius hasta. Ecotoxicol Environ Saf 73:1286–1291

    Article  PubMed  CAS  Google Scholar 

  20. Liu XJ, Luo Z, Li CH, Xiong BX, Zhao YH, Li XD (2011) Antioxidant responses, hepatic intermediary metabolism, histology and ultrastructure in Synechogobius hasta exposed to waterborne cadmium. Ecotoxicol Environ Saf 74:1156–1163

    Article  PubMed  CAS  Google Scholar 

  21. Zheng JL, Luo Z, Chen QL, Liu X, Liu CX, Zhao YH, Gong Y (2011) Effect of waterborne zinc exposure on metal accumulation, enzymatic activities and histology of Synechogobius hasta. Ecotoxicol Environ Saf 74:1864–1873

    Article  PubMed  CAS  Google Scholar 

  22. Luo Z, Tan XY, Li XD, Yin GJ (2012) Effect of dietary arachidonic acid levels on growth performance, hepatic fatty acid profile, intermediary metabolism and antioxidant responses for juvenile Synechogobius hasta. Aquacult Nutr 18:340–348

    Article  CAS  Google Scholar 

  23. AOAC (Association of Official Analytical Chemists) (1995) Official methods of analysis, 16th edn. AOAC, Arlington

    Google Scholar 

  24. Suarez RK, Hochachka PW (1981) Preparation and properties of rainbow trout liver mitochondria. J Comp Physiol 143:269–273

    CAS  Google Scholar 

  25. Bremer J, Woldegiorgis G, Schalinske K, Shrago E (1985) Carnitine palmitoyltransferase activation by palmitoyl-CoA and inactivation by malonyl-CoA. Biochem Biophys Acta 833:9–16

    Article  PubMed  CAS  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  27. Hofstee B (1952) On the evaluation of the constants V m and K m in enzyme reactions. Science 116:329

    Article  PubMed  CAS  Google Scholar 

  28. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  29. Choi BD, Kang SJ, Ha YL, Ackman RG (1999) Accumulation of conjugated linoleic acid (CLA) in tissues of fish fed diets containing various levels of CLA. In: Xiong YL, Ho CT, Shahidi F (eds) Quality attributes of muscle foods. Kluwer/Plenum Publishers, New York, pp 61–71

    Chapter  Google Scholar 

  30. Berge GM, Ruyter B, Asgard T (2004) Conjugated linoleic acid in diets for juvenile Atlantic salmon (Salmo salar), effects on fish performance, proximate composition, fatty acid and mineral content. Aquaculture 237:365–380

    Article  CAS  Google Scholar 

  31. Kennedy SR, Campbell PJ, Porter A, Tocher DR (2005) Influence of dietary conjugated linoleic acid (CLA) on lipid and fatty acid composition in liver and flesh of Atlantic salmon (Salmo salar). Comp Biochem Physiol 141B:168–178

    CAS  Google Scholar 

  32. Makol A, Torrecillas S, Fernandez-Vaquero A, Robaina L, Montero D, Caballero MJ, Tort L, Izquierdo M (2009) Effect of conjugated linoleic acid on dietary lipids utilization, liver morphology and selected immune parameters in sea bass juveniles (Dicentrarchus labrax). Comp Biochem Physiol 154B:179–187

    CAS  Google Scholar 

  33. Delany JP, Blohm F, Truett AA, Scimeca JA, West DB (1999) Conjugated linoleic acid rapidly reduces body fat content in mice without affecting energy intake. Am J Physiol 276:R1172–R1179

    PubMed  CAS  Google Scholar 

  34. Ostrowska E, Muralitharan M, Cross RF, Bauman DE, Dunshea FR (1999) Dietary conjugated linoleic acids increase lean tissue and decrease fat deposition in growing pigs. J Nutr 129:2037–2042

    PubMed  CAS  Google Scholar 

  35. Thiel-Cooper RL, Parrish FC Jr, Sparks JC, Wiegand BR, Ewan RC (2001) Conjugated linoleic acid changes swine performance and carcass composition. J Anim Sci 79:1821–1828

    PubMed  CAS  Google Scholar 

  36. Terpstra AH, Beynen AC, Everts H, Kocsis S, Katan MB, Zock PL (2002) The decrease in body fat in mice fed conjugated linoleic acid is due to increases in energy expenditure and energy loss in the excreta. J Nutr 132:940–945

    PubMed  CAS  Google Scholar 

  37. Diez A, Menoyo D, Perez-Benavente S, Calduch-Giner JA, Vega-Rubin de Celis S, Obach A, Favre-Krey L, Boukouvala E, Leaver MJ, Tocher DR, Perez-Sanchez J, Krey G, Bautista JM (2007) Conjugated linoleic acid affects lipid composition, metabolism and gene expression in gilthead sea bream (Sparus aurata). J Nutr 137:1363–1369

    PubMed  CAS  Google Scholar 

  38. Oku H, Wongtangtintharn S, Iwasaki H, Toda T (2003) Conjugated linoleic acid (CLA) inhibits fatty acid synthetase activity in vitro. Biosci Biotechnol Biochem 67:1584–1586

    Article  PubMed  CAS  Google Scholar 

  39. Evans M, Lin X, Odle J, McIntosh M (2002) trans-10,cis-12 conjugated linoleic acid increases fatty acid oxidation in 3T3-L1 preadipocytes. J Nutr 132:450–455

    PubMed  CAS  Google Scholar 

  40. Brown JM, McInstosh MK (2003) Conjugated linoleic acid in humans: regulation of adiposity and insulin sensitivity. J Nutr 133:3041–3046

    PubMed  CAS  Google Scholar 

  41. Bouthegourd JC, Even PC, Gripois D, Toffon B, Blouquit MF, Roseau S, Lutton C, Tome D, Martin JC (2002) A CLA mixture prevents body triglyceride accumulation without affecting energy expenditure in Syrian hamsters. J Nutr 132:2682–2689

    PubMed  CAS  Google Scholar 

  42. Degrace P, Demizieux L, Gresti J, Chardigny JM, Sébédio JL, Coulet P (2004) Hepatic steatosis is not due to impaired fatty acid oxidation capacities in C57BL/6j mice fed the conjugated trans-10,cis-12-isomer of linoleic acid. J Nutr 134:861–867

    PubMed  CAS  Google Scholar 

  43. Morash AJ, Bureau DP, McClelland GB (2009) Effects of dietary fatty acid composition on the regulation of carnitine palmitoyltransferase (CPT) I in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol 152B:85–93

    CAS  Google Scholar 

  44. Lin X, Odle J (2003) Changes in kinetics of carnitine palmitoyltransferase in liver and skeletal muscle of dogs (Canis familiaris) throughout growth and development. J Nutr 133:1113–1119

    PubMed  CAS  Google Scholar 

  45. Morash AJ, Kajimura M, McClelland GB (2008) Intertissue regulation of carnitine palmitoyltransferase I (CPT I): mitochondrial membrane properties and gene expression in rainbow trout (Oncorhynchus mykiss). Biochim Biophys Acta 1778:1382–1389

    Article  PubMed  CAS  Google Scholar 

  46. Weis BC, Esser V, Foster DW, McGarry JD (1994) Rat heart expresses two forms of mitochondrial carnitine palmitoyltransferase I. J Biol Chem 269:18712–18715

    PubMed  CAS  Google Scholar 

  47. Price N, van der Leij F, Jackson V, Corstorphine C, Thomson R, Sorensen A, Zammit V (2002) A novel brain-expressed protein related to carnitine palmitoyltransferase I. Genomics 80:433–442

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a program for New Century Excellent Talents in University, Ministry of Education, China (Grant No. NCET-08-0782), by the Special Fund for Central University, Ministry of Education, China (Grant No. 52204-10078), by the National Natural Science Foundation of China (Grant Nos. 30800850, 31072226). We wish to thank the staff of the Panjin Guanghe Fisheries Co., Ltd., for providing the experimental base and for their logistic support during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Luo.

About this article

Cite this article

Tan, XY., Luo, Z., Zeng, Q. et al. trans-10,cis-12 Conjugated Linoleic Acid Improved Growth Performance, Reduced Lipid Deposition and Influenced CPT I Kinetic Constants of Juvenile Synechogobius hasta . Lipids 48, 505–512 (2013). https://doi.org/10.1007/s11745-013-3759-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-013-3759-5

Keywords

Navigation