Skip to main content
Log in

Molecular Ion-Independent Quantification of Polar Glycerolipid Classes in Marine Plankton Using Triple Quadrupole MS

  • Methods
  • Published:
Lipids

Abstract

Polar glycerolipids are a diverse family of lipid molecules that form the bulk of bacterial and eukaryotic microbial membranes. The earth and ocean sciences has a long history of using fatty acids as biomarkers for microbes, but have only recently begun to examine the intact polar lipids from which they are derived. Current analytical approaches rely on laboriously quantifying the molecular ions of each of these species independently. Thus, we saw a need for a method for quantifying polar glycerolipid classes that was: (i) selective for individual classes, (ii) inclusive of all species within a class, (iii) independent of foreknowledge of the molecular ions of the polar glycerolipid, and (iv) amenable to automated, high-throughput data analysis methods. Our new HPLC-electrospray-ionization triple-quadrupole MS (HPLC-ESI-TQMS) method can be applied to quantify the nine major classes of polar glycerolipid in planktonic communities: the phospholipids phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine; the glycolipids monoglycosyldiacylglycerol, diglycosyldiacylglycerol and sulfoquinovosyldiacylglycerol; and the betaine lipids diacylglyceryl trimethyl homoserine, diacylglyceryl hydroxymethyl trimethyl-β-alanine, and diacylglyceryl carboxyhydroxymethylcholine. The analyses rely on neutral loss and parent ion scan events that yield one chromatogram for each class of polar glycerolipid, simplifying downstream analysis and increasing sample throughput. The efficacy of the method was demonstrated by analyzing plankton community samples from a variety of marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DGCC:

Diacylglyceryl carboxyhydroxymethylcholine

DGDG:

Diglycosyldiacylglycerol

DGTA:

Diacylglyceryl hydroxymethyl trimethyl-β-alanine

DGTS:

Diacylglyceryl trimethyl homoserine

DNP-PtdEtn:

Dinitrophenyl-phosphatidylethanolamine

ESI:

Electrospray ionization

FAME:

Fatty acid methyl ester(s)

HPLC:

High-performance liquid chromatography

ITMS:

Ion-trap mass spectrometry

PtdCho:

Phosphatidylcholine

PtdEtn:

Phosphatidylethanolamine

PtdGro:

Phosphatidylglycerol

MGDG:

Monoglycosyldiacylglycerol

SQDG:

Sulfoquinovosyldiacylglycerol

SRM:

Selected reaction monitoring

TQMS:

Triple quadrupole mass spectrometry

References

  1. Cho BC, Azam F (1990) Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone. Mar Ecol Prog Ser 63:253–259

    Article  CAS  Google Scholar 

  2. Van Mooy BAS, Fredricks HF (2010) Bacterial and eukaryotic intact polar lipids in the eastern subtropical South Pacific: Water-column distribution, planktonic sources, and fatty acid composition. Geochim Cosmochim Acta 74:6499–6516

    Article  Google Scholar 

  3. Farrington JW, Quinn JG (1971) Fatty acid diagenesis in recent sediment from Narragansett Bay, Rhode Island. Nature 230:67–69

    CAS  Google Scholar 

  4. Wakeham SG, Canuel EA (1988) Organic geochemistry of particulate matter in the eastern tropical North Pacific Ocean: implications for particle dynamics. J Mar Res 46:183–213

    Article  CAS  Google Scholar 

  5. Rütters H, Sass H, Cypionka H, Rullkötter J (2002) Phospholipid analysis as a tool to study complex microbial communities in marine sediments. J Microbiol Methods 48:149–160

    Article  PubMed  Google Scholar 

  6. Sturt HF, Summons RE, Smith K, Elvert M, Hinrichs K-U (2004) Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry–new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom 18:617–628

    Article  PubMed  CAS  Google Scholar 

  7. Van Mooy BAS, Rocap G, Fredricks HF, Evans CT, Devol AH (2006) Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic environments. Proc Natl Acad Sci 103:8607–8612

    Article  PubMed  Google Scholar 

  8. Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblízek M, Lomas MW, Mincer TJ, Moore LR, Moutin T, Rappé MS, Webb EA (2009) Phytoplankton in the ocean substitute phospholipids in response to phosphorus scarcity. Nature 458:69–72

    Article  PubMed  Google Scholar 

  9. Schubotz F, Wakeham SG, Lipp JS, Fredricks HF, Hinrichs K-U (2009) Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea. Environ Microbiol 11:2720–2734

    Article  PubMed  CAS  Google Scholar 

  10. Popendorf KJ, Tanaka T, Pujo-Pay M, Lagaria A, Courties C, Conan P, Oriol L, Sofen LE, Moutin T, Van Mooy BAS (2011) Gradients in polar glycerolipids across the Mediterranean Sea are related to phosphate availability. Biogeosciences 8:3733–3745

    Article  CAS  Google Scholar 

  11. Suzumura M, Ingall ED (2001) Concentrations of lipid phosphorus and its abundance in dissolved and particulate organic phosphorus in coastal seawater. Mar Chem 75:141–149

    Article  CAS  Google Scholar 

  12. Oliver JD, Colwell RR (1973) Extractable lipids of gram-negative marine bacteria: phospholipid composition. J Bacteriol 114:897–908

    PubMed  CAS  Google Scholar 

  13. White DC (1988) Validation of quantitative analysis for microbial biomass, community structure, and metabolic activity. Arch Hydrobiol Beih Ergebn Limnol 31:1–18

    Google Scholar 

  14. Van Mooy BAS, Moutin T, Duhamel S, Rimmelin P, Wambeke FV (2008) Phospholipid synthesis rates in the eastern tropical South Pacific Ocean. Biogeosciences 5:133–139

    Article  Google Scholar 

  15. Brandsma J, Hopmans EC, Philippart CJM, Veldhuis MJW, Schouten S, Damsté JSS (2012) Low temporal variation in the intact polar lipid composition of North Sea coastal marine water reveals limited chemotaxonomic value. Biogeosciences 9:1073–1084. doi:10.5194/bg-9-1073-2012

    Article  CAS  Google Scholar 

  16. Martin P, Van Mooy BAS, Heithoff A, Dyhrman ST (2011) Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom Thalassiosira pseudonana. ISME J 5:1057–1060

    Article  PubMed  CAS  Google Scholar 

  17. Bellinger BJ, Van Mooy BAS (2012) Non-phosphorus lipids in periphyton reflect available nutrients in the Florida Everglades, USA. J Phycol 48:303–311. doi:10.1111/j.1529-8817.2012.01125.x

    Article  CAS  Google Scholar 

  18. Moore JK, Doney SC, Lindsay K (2004) Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem Cy 18. doi:10.1029/2004GB002220

  19. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Physiol Pharmacol 37:911–917

    Article  CAS  Google Scholar 

  20. Isaac G, Jeannotte R, Esch SW, Welti R (2007) New mass-spectrometry-based strategies for lipids. Genet Eng: Princ Methods 28:129–157

    Article  CAS  Google Scholar 

  21. Koivusalo M, Haimi P, Heikinheimo L, Kostiainen R, Somerharju P (2001) Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J Lipid Res 42:663–672

    PubMed  Google Scholar 

  22. Vardi A, Van Mooy BAS, Fredricks HF, Popendorf KJ, Ossolinski JE, Haramaty L, Bidle KD (2009) Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton. Science 326:861–865

    Article  PubMed  CAS  Google Scholar 

  23. Popendorf KJ, Lomas MW, Van Mooy BAS (2011) Microbial sources of polar glycerolipids in the Western North Atlantic Ocean. Org Geochem 42:803–811

    Article  CAS  Google Scholar 

  24. Edwards BR, Reddy CM, Camilli R, Carmichael CA, Longnecker K, Van Mooy BAS (2011) Rapid microbial respiration of oil from the deepwater horizon spill in offshore surface waters of the Gulf of Mexico. Environ Res Lett 6. doi:10.1088/1748-9326/6/3/035301

  25. Benning C, Beatty JT, Prince RC, Somerville CR (1993) The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation. Proc Natl Acad Sci 90:1561–1565

    Article  PubMed  CAS  Google Scholar 

  26. Benning C, Huang Z-H, Gage DA (1995) Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation. Arch Biochem Biophys 317:103–111

    Article  PubMed  CAS  Google Scholar 

  27. Minnikin DE, Abdolrahimzadeh H, Baddiley J (1974) Replacement of acidic phospholipids by acidic glycolipids in Pseudomonas diminuta. Nature 249:268

    Article  PubMed  CAS  Google Scholar 

  28. Longnecker K, Lomas MW, Van Mooy BAS (2010) Abundance and diversity of heterotrophic bacterial cells assimilating phosphate in the subtropical North Atlantic Ocean. Environ Microbiol 12:2773–2782

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the contributions of Patrick Martin for South Atlantic polar glycerolipid data as well as assistance extracting and purifying betaine standards; Laura Sofen for culturing phytoplankton as well as extraction and purification of betaine standards; Krista Longnecker and Sonya Dyhrman for assistance culturing phytoplankton for betaine standards; James Fulton and Suni Shah for work developing the PrincetonSpher diol chromatography method; and Catherine Carmichael and Daniel Montlucon for GC-FID analysis to quantify the betaine standards. This research was supported by the US Office of Naval Research (N00014-08-0764 and N00014-09-0091) and the US National Science Foundation (OCE-0646944 and OCE-1029687).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen F. Fredricks.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11745_2012_3748_MOESM1_ESM.pdf

Supplemental Material Fig. 1. Headgroups of the nine most abundant polar glycerolipid classes in marine environments. Chemical forms are presented as the molecular ions, with ammonium adducts (contributed by the HPLC eluents) associated with the relevant classes. R1 and R2 represent acyl chains that vary in composition (PDF 21 kb)

About this article

Cite this article

Popendorf, K.J., Fredricks, H.F. & Van Mooy, B.A.S. Molecular Ion-Independent Quantification of Polar Glycerolipid Classes in Marine Plankton Using Triple Quadrupole MS. Lipids 48, 185–195 (2013). https://doi.org/10.1007/s11745-012-3748-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-012-3748-0

Keywords

Navigation