Skip to main content
Log in

JNK Inhibition by SP600125 Attenuates trans-10, cis-12 Conjugated Linoleic Acid-Mediated Regulation of Inflammatory and Lipogenic Gene Expression

  • Original Article
  • Published:
Lipids

Abstract

Supplementation with a mixture of trans-10, cis-12 (t10,c12) and cis-9, trans-11 (c9,t11) isomers of conjugated linoleic acid (CLA), or t10,c12 CLA alone, reduces body weight and fat deposition in animals and some humans. However, these anti-obesity actions of t10,c12 CLA are routinely accompanied by increased markers of inflammation and insulin resistance. Thus, we examined the extent to which blocking c-Jun NH2-terminal kinase (JNK) signaling using the JNK inhibitor SP600125 attenuated markers of inflammation and insulin resistance in primary human adipocytes treated with t10,c12 CLA. SP600125 attenuated t10,c12 CLA-mediated phosphorylation of cJun and increased protein levels of activating transcription factor (ATF) 3, two downstream targets of JNK. SP600125 attenuated t10,c12 CLA-mediated induction of inflammatory genes, including interleukin (IL)-6, IL-8, IL-1β, ATF3, monocyte chemoattractant protein (MCP)-1, and cyclooxygenase-2. Consistent with these data, SP600125 prevented t10,c12 CLA-mediated secretion of IL-8, IL-6, and MCP-1. SP600125 prevented t10,c12 CLA suppression of lipogenic genes including peroxisome proliferator activated receptor gamma, liver X receptor, sterol regulatory element binding protein, acetyl-CoA carboxylase, and stearoyl-CoA desaturase. Additionally, SP600125 blocked t10,c12 CLA-mediated induction of suppressor of cytokine synthesis-3 and suppression of adiponectin and insulin-dependent glucose transporter 4 mRNA levels. Collectively, these data suggest that JNK signaling plays an important role in t10,c12 CLA-mediated regulation of inflammatory and lipogenic gene expression in primary cultures of human adipocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

AP-1:

Activator protein

apm-1:

Adiponectin

ATF:

Activating transcription factor 3

BMI:

Body mass index

BSA:

Bovine serum albumin

c9,t11 CLA:

Cis-9, trans-11 conjugated linoleic acid

t10,c12 CLA:

Trans-10, cis-12 conjugated linoleic acid

COX:

Cyclooxygenase

DEX:

Dexamethasone

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinase

FA:

Fatty acid

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GLUT4:

Insulin-dependent glucose transporter 4

HBSS:

Hanks balanced salt solution

IBMX:

1-methyl-3-isobutylxanthine

IL:

Interleukin

IRS:

Insulin receptor substrate

ISR:

Integrated stress response

JNK:

c-Jun-NH2-terminal kinase

LXR:

Liver X receptor

MAPK:

Mitogen-activated protein kinase

MCP:

Monocyte chemoattractant protein

MEK:

Mitogen-activated protein kinase kinase

NFκB:

Nuclear factor kappa B

PPAR:

Peroxisome proliferator activated receptor

SCD:

Stearoyl-CoA desaturase

SOCS:

Suppressor of cytokine synthesis

SREBP:

Sterol regulatory element binding protein

SV:

Stromal vascular

TG:

Triglyceride

TZD:

Thiazolidinedione

References

  1. World Health Organization (2011). Obesity and Overweight. http://www.who.int/mediacentre/factsheets/fs311/en/index.html Accessed 7 Mar 2011

  2. Kennedy A, Martinez K, Schmidt S, Mandrup S, Lapoint K, McIntosh M (2010) Anti-obesity mechanisms of action of conjugated linoleic acid. J Nutr Biochem 21:171–179

    Article  PubMed  CAS  Google Scholar 

  3. Risérus U, Arner P, Brismar K, Vessby B (2002) Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care 25:1516–1521

    Article  PubMed  Google Scholar 

  4. Moloney F, Yeow TP, Mullen A, Nolan JJ, Roche HM (2004) Conjugated linoleic acid supplementation, insulin sensitivity, and lipoprotein metabolism in patients with type 2 diabetes mellitus. Am J Clin Nutr 80:887–895

    PubMed  CAS  Google Scholar 

  5. Steck SE, Chalecki AM, Miller P, Conway J, Austin GL, Hardin JW, Albright CD, Thuillier P (2007) Conjugated linoleic acid supplementation for twelve weeks increases lean body mass in obese humans. J Nutr 137:1188–1193

    PubMed  CAS  Google Scholar 

  6. Thrush AB, Chabowski A, Heigenhauser GJ, McBride BW, Or-Rashid M, Dyck DJ (2007) Conjugated linoleic acid increases skeletal muscle ceramide content and decreases insulin sensitivity in overweight, non-diabetic humans. Appl Physiol Nutr Metab 32:372–382

    Article  PubMed  CAS  Google Scholar 

  7. Tholstrup T, Raff M, Straarup EM, Lund P, Basu S, Bruun JM (2008) An oil mixture with trans-10, cis-12 conjugated linoleic acid increases markers of inflammation and in vivo lipid peroxidation compared with cis-9, trans-11 conjugated linoleic acid in postmenopausal women. J Nutr 138:1445–1451

    PubMed  CAS  Google Scholar 

  8. Moloney F, Toomey S, Noone E, Nugent A, Allan B, Loscher C, Roche H (2007) Antidiabetic effects of cis-9, trans-11 conjugated linoleic acid may be mediated via anti-inflammatory effects in white adipose tissue. Diabetes 56:574–582

    Article  PubMed  CAS  Google Scholar 

  9. Brown JM, Boysen M, Chung S, Fabiyi O, Morrision R, Mandrup S, McIntosh M (2004) Conjugated linoleic acid (CLA) induces human adipocyte delipidation: autocrine/paracrine regulation of MEK/ERK signaling by adipocytokines. J Biol Chem 279:26735–26747

    Article  PubMed  CAS  Google Scholar 

  10. Chung S, Brown JM, Provo JN, Hopkins R, McIntosh M (2005) Conjugated linoleic acid promotes human adipocyte insulin resistance through NFkappaB-dependent cytokine production. J Biol Chem 280:38445–38456

    Article  PubMed  CAS  Google Scholar 

  11. Poirier H, Shapiro H, Kim R, Lazar M (2006) Nutritional supplementation with trans-10, cis-12 conjugated linoleic acid induces inflammation of white adipose tissue. Diabetes 55:1634–1641

    Article  PubMed  CAS  Google Scholar 

  12. Ruan H, Hacohen N, Golub T, Van Parijs L, Lodish H (2002) Profiling gene transcription in vivo reveals adipose tissue as an intermediate target for tumor necrosis alpha: implications for insulin resistance. Diabetes 51:1319–1336

    Article  PubMed  CAS  Google Scholar 

  13. Ruan H, Pownall H, Lodish H (2003) Troglitazone antagonizes tumor necrosis factor-a induced reprogramming of adipocyte gene expression by inhibiting the transcriptional regulatory functions of NFkB. J Biol Chem 278:28181–28192

    Article  PubMed  CAS  Google Scholar 

  14. Suzawa M, Takada I, Yanagisawa J, Ohtake F, Ogawa S, Yamauchi T, Kadowaki T, Takeuchi Y, Shibuya H, Gotoh Y, Matsumoto K, Kato S (2003) Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB 1/NIK cascade. Nat Cell Biol 5:224–230

    Article  PubMed  CAS  Google Scholar 

  15. Adams M, Reginato M, Shao D, Lazar M, Chatterjee V (1997) Transcriptional activation by peroxisome proliferator activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem 272:5128–5132

    Article  PubMed  CAS  Google Scholar 

  16. Camp H, Tafuri S (1997) Regulation of peroxisome proliferators-activated receptor γ activity by mitogen activated protein kinase. J Biol Chem 272:10811–10816

    Article  PubMed  CAS  Google Scholar 

  17. de Mora J, Porras A, Ahn N, Santos E (1997) Mitogen-activated protein kinase activation is not necessary for, but antagonizes, 3T3–L1 adipocytic differentiation. Mol Cell Biol 17:6068–6075

    Google Scholar 

  18. Kennedy A, Martinez K, Chung S, LaPoint K, West T, Hopkins R, Schmidt S, Andersen K, Mandrup S, McIntosh M (2010) Inflammation and insulin resistance induced by trans-10, cis-12 conjugated linoleic acid are dependent on intracellular calcium levels in primary cultures of human adipocytes. J Lipid Res 51:1906–1917

    Article  PubMed  CAS  Google Scholar 

  19. Martinez K, Kennedy A, West T, Milatovic D, Aschner M, McIntosh MK (2010) Trans-10, cis-12 conjugated linoleic acid promotes inflammation to a greater extent in human adipocytes compared to preadipocytes. J Biol Chem 285:17701–17712

    Article  PubMed  CAS  Google Scholar 

  20. Hirosumi J, Tuncman G, Chang G, Gorgun C, Uysal K, Maeda K, Karin M, Hotamisligil G (2002) A central role of JNK in obesity and insulin resistance. Nature 420:333–336

    Article  PubMed  CAS  Google Scholar 

  21. Tuncman G, Hirosumi H, Solinas G, Chang L, Karin M, Hotamisligil G (2006) Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc Natl Acad Sci USA 103:10741–10746

    Article  PubMed  CAS  Google Scholar 

  22. Davis J, Gabler N, Walker-Daniels J, Spurlock M (2009) The c-Jun N terminal kinase mediates the induction of oxidative stress and insulin resistance by palmitate and toll-like receptor 2 and 4 ligands in adipocytes. Horm Metab Res 41:523–530

    Article  PubMed  CAS  Google Scholar 

  23. Bennett BL, Sasaki DT, Murray BW, O’Leary EC, Sakata ST, Xu W, Leisten JC, Motiwala A, Pierce S, Satoh Y, Bhagwat SS, Manning AM, Anderson DW (2001) SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 98:13681–13686

    Article  PubMed  CAS  Google Scholar 

  24. Gupta S, Barrett T, Whitmarsh A, Cavanagh J, Sluss H, Derijard B, Davis R (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15:2760–2770

    PubMed  CAS  Google Scholar 

  25. Holzberg D, Knight G, Dittrich-Breiholz O, Schneider H, Dorrie A, Hoffman E, Resch K, Krach M (2003) Disruption of c-JUN-JNK complex by a cell permeable peptide containing the c-JUN g domain induces apoptosis and affects a distinct set of interleukin-1-induced inflammatory genes. J Biol Chem 41:40213–40223

    Article  Google Scholar 

  26. Jiao P, Chen Q, Shah S, Du J, Tao J, Tzamelim I, Wan W, Xu G (2009) Obesity-related upregulation of monocyte chemotactic factors in adipocytes. Diabetes 58:104–115

    Article  PubMed  CAS  Google Scholar 

  27. Hu E, Kim JB, Sarraf P, Spiegelman BM (1996) Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 274:2100–2103

    Article  PubMed  CAS  Google Scholar 

  28. Floyd ZE, Stephens JM (2002) Interferon-gamma-mediated activation and ubiquitin-proteasome-dependent degradation of PPARgamma in adipocytes. J Biol Chem 277:4062–4068

    Article  PubMed  CAS  Google Scholar 

  29. Shao DL, Rangwala SM, Bailey ST, Krakow SL, Reginato MJ, Lazar MA (1998) Interdomain communication regulating ligand binding by PPARgamma. Nature 396:377–380

    Article  PubMed  CAS  Google Scholar 

  30. Diradourian C, Girard J, Pégorier JP (2005) Phosphorylation of PPARs: from molecular characterization to physiological relevance. Biochimie 87:33–38

    Article  PubMed  CAS  Google Scholar 

  31. Burns KA, Vanden Heuvel JP (2007) Modulation of PPAR activity via phosphorylation. Biochim Biophys Acta 1771:952–960

    PubMed  CAS  Google Scholar 

  32. Kennedy A, Chung S, LaPoint K, Fabiyi O, McIntosh MK (2008) Trans-10, cis-12 conjugated linoleic acid antagonizes ligand-dependent PPARgamma activity in primary cultures of human adipocytes. J Nutr 138:455–461

    PubMed  CAS  Google Scholar 

  33. Kennedy A, Overman A, Lapoint K, Hopkins R, West T, Chuang CC, Martinez K, Bell D, McIntosh MK (2009) Conjugated linoleic acid-mediated inflammation and insulin resistance in human adipocytes are attenuated by resveratrol. J Lipid Res 50:225–232

    Article  PubMed  CAS  Google Scholar 

  34. Rozo A, Vijayvargia R, Weiss H, Ruan H (2008) Silencing JNK1 and JNK2 accelerate basal lipolysis and promote fatty acid re-esterification in mouse adipocytes. Diabetologia 51:1493–1504

    Article  PubMed  CAS  Google Scholar 

  35. Kim T, Leitner J, Adochio R, Draznin B (2009) Knockdown of JNK rescues 3T3–L1 adipocytes from insulin resistance induced by mitochondrial dysfunction. Biochem Biophys Res Commun 378:772–776

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institute of Health (NIH) National Institute of Diabetes and Digestive and Kidney Diseases/Office of Dietary Supplements (NIDDK/ODS) (5R01-DK063070) to MM, the North Carolina Agriculture Research Service (NCARS 06520) to MM, the NIH 5F31DK076208 and United Negro College Fund (UNCF)-Merck fellowships to AK, and NIH F31DK084812 to KM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. McIntosh.

About this article

Cite this article

Martinez, K., Kennedy, A. & McIntosh, M.K. JNK Inhibition by SP600125 Attenuates trans-10, cis-12 Conjugated Linoleic Acid-Mediated Regulation of Inflammatory and Lipogenic Gene Expression. Lipids 46, 885–892 (2011). https://doi.org/10.1007/s11745-011-3587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3587-4

Keywords

Navigation