Skip to main content
Log in

In vitro anti-obesity effects of sesamol mediated by adenosine monophosphate-activated protein kinase and mitogen-activated protein kinase signaling in 3T3-L1 cells

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Sesamol is a phenol derivative of sesame oil and a potent anti-oxidant, anti-inflammatory, anti-hepatotoxic, and anti-aging compound. We investigated the effects of sesamol on the molecular mechanisms of adipogenesis in 3T3-L1 preadipocytes. The intracellular lipid accumulation accompanied by increased extracellular release of free glycerol was decreased during differentiation on treating 3T3-L1 with sesamol. Sesamol treatment on 3T3-L1 inhibited adipogenic differentiation by down-regulating adipogenesis-related factors (C/EBPα, PPARγ, and SREBP-1). Lipid accumulation was repressed by decreasing fatty acid synthase and by up-regulating lipolysis-response genes (HSL and LPL). The molecular mechanisms of sesamol-induced inhibition in adipogenesis were mediated by increased levels of phosphorylated adenosine monophosphate-activated protein kinase and its substrate acetyl-CoA carboxylase. Sesamol treatment, in turn, modulated the different members of the mitogenactivated protein kinase family by suppressing phosphorylation of ERK 1/2 and JNK and by increasing the phosphorylation of p38. In summary, sesamol inhibits adipogenic differentiation by reducing phosphorylation levels of ERK 1/2 and JNK while inducing lipolysis by activating p38 and AMPK. Our results demonstrate that the molecular mechanisms of in vitro anti-obesity effects of sesamol are due to the combined effects of preventing both lipid accumulation and adipogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu YH, Ginsberg HN. Adipocyte signaling and lipid homeostasis: Sequelae of insulin-resistant adipose tissue. Circ. Res. 96: 1042–1052 (2005)

    Article  CAS  Google Scholar 

  2. Furuyashiki T, Nagayasu H, Aoki Y, Bessho H, Hashimoto T, Kanazawa K, Ashida H. Tea catechin suppresses adipocyte differentiation accompanied by downregulation of PPARgamma2 and C/EBPalpha in 3T3-L1 cells. Biosci. Biotech. Bioch. 68: 2353–2359 (2004)

    Article  CAS  Google Scholar 

  3. Kopelman PG. Obesity as a medical problem. Nature 404: 635–643 (2000)

    CAS  Google Scholar 

  4. Visscher TL, Seidell JC. The public health impact of obesity. Annu. Rev. Publ. Health 22: 355–375 (2001)

    Article  CAS  Google Scholar 

  5. Thijssen E, Van Caam A, van der Kraan PM. Obesity and osteoarthritis, more than just wear and tear: pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology 54: 588–600 (2015)

    Article  Google Scholar 

  6. McGill AT. Causes of metabolic syndrome and obesity-related co-morbidities Part 1: A composite unifying theory review of human-specific co-adaptations to brain energy consumption. Arch. Public Health 72: 30 (2014)

    Article  Google Scholar 

  7. Kim SS, Seo JY, Kim BR, Kim HJ, Lee HY, Kim JS. Anti-obesity activity of peanut sprout extract. Food Sci. Biotechnol. 23: 601–607 (2014)

    Article  CAS  Google Scholar 

  8. Wang YW, Jones PJ. Conjugated linoleic acid and obesity control: Efficacy and mechanisms. Int. J. Obes. Relat. Metab. Disord. 28: 941–955 (2004)

    Article  CAS  Google Scholar 

  9. Liu X, Kim JK, Li Y, Li J, Liu F, Chen X. Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3T3-L1 cells. J. Nutr. 135: 165–171 (2005)

    CAS  Google Scholar 

  10. Yin J, Zhang H, Ye J. Traditional chinese medicine in treatment of metabolic syndrome. Endocr. Metab. Immune Disord. Drug Targets. 8: 99–111 (2008)

    Article  CAS  Google Scholar 

  11. Ailhaud G, Grimaldi P, Negrel R. Cellular and molecular aspects of adipose tissue development. Annu. Rev. Nutr. 12: 207–233 (1992)

    Article  CAS  Google Scholar 

  12. Boney CM, Moats-Staats BM, Stiles AD, D'Ercole AJ. Expression of insulin-like growth factor-I (IGF-I) and IGF-binding proteins during adipogenesis. Endocrinology 135: 1863–1868 (1994)

    CAS  Google Scholar 

  13. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79: 1147–1156 (1994)

    Article  CAS  Google Scholar 

  14. MacDougald OA, Cornelius P, Liu R, Lane MD. Insulin regulates transcription of the CCAAT/enhancer binding protein (C/EBP) alpha, beta, and delta genes in fully-differentiated 3T3-L1 adipocytes. J. Biol. Chem. 270: 647–654 (1995)

    Article  CAS  Google Scholar 

  15. Hardie DG, Hawley SA. AMP-activated protein kinase: The energy charge hypothesis revisited. Bioessays 23: 1112–1119 (2001)

    Article  CAS  Google Scholar 

  16. Prusty D, Park BH, Davis KE, Farmer SR. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARgamma) and C/EBPalpha gene expression during the differentiation of 3T3-L1 preadipocytes. J. Biol. Chem. 277: 46226–46232 (2002)

    Article  CAS  Google Scholar 

  17. Belmonte N, Phillips BW, Massiera F, Villageois P, Wdziekonski B, Saint-Marc P, Nichols J, Aubert J, Saeki K, Yuo A, Narumiya S, Ailhaud G, Dani C. Activation of extracellular signal-regulated kinases and CREB/ATF-1 mediate the expression of CCAAT/enhancer binding proteins beta and -delta in preadipocytes. Mol. Endocrinol. 15: 2037–2049 (2001)

    CAS  Google Scholar 

  18. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for JNK in obesity and insulin resistance. Nature 420: 333–336 (2002)

    Article  CAS  Google Scholar 

  19. Yang TT, Xiong Q, Enslen H, Davis RJ, Chow CW. Phosphorylation of NFATc4 by p38 mitogen-activated protein kinases. Mol. Cell. Biol. 22: 3892–3904 (2002)

    Article  CAS  Google Scholar 

  20. Pan J, Kim M, Kim J, Cho Y, Shin H-S, Sung J-S, Park T, Yoon H-G, Park S, Kim Y. Inhibition of the lipogenesis in liver and adipose tissue of diet-induced obese C57BL/6 mice by feeding oleic acid-rich sesame oil. Food Sci. Biotechnol. 24: 1115–1121 (2015)

    Article  CAS  Google Scholar 

  21. Chu PY, Hsu DZ, Hsu PY, Liu MY. Sesamol down-regulates the lipopolysaccharide-induced inflammatory response by inhibiting nuclear factor-kappa B activation. Innate Immun. 16: 333–339 (2010)

    Article  CAS  Google Scholar 

  22. Kumar N, Mudgal J, Parihar VK, Nayak PG, Kutty NG, Rao CM. Sesamol treatment reduces plasma cholesterol and triacylglycerol levels in mouse models of acute and chronic hyperlipidemia. Lipids 48: 633–638 (2013)

    Article  CAS  Google Scholar 

  23. Chopra K, Tiwari V, Arora V, Kuhad A. Sesamol suppresses neuro-inflammatory cascade in experimental model of diabetic neuropathy. J. Pain 11: 950–957 (2010)

    Article  CAS  Google Scholar 

  24. Ahmadian M, Duncan RE, Jaworski K, Sarkadi-Nagy E, Sul HS. Triacylglycerol metabolism in adipose tissue. Future Lipidol. 2: 229–237 (2007)

    Article  CAS  Google Scholar 

  25. Rayalam S, Della-Fera MA, Baile CA. Phytochemicals and regulation of the adipocyte life cycle. J. Nutr. Biochem. 19: 717–726 (2008)

    Article  CAS  Google Scholar 

  26. Madsen MS, Siersbaek R, Boergesen M, Nielsen R, Mandrup S. Peroxisome proliferator-activated receptor gamma and C/EBPalpha synergistically activate key metabolic adipocyte genes by assisted loading. Mol. Cell. Biol. 34: 939–954 (2014)

    Article  Google Scholar 

  27. Bost F, Aouadi M, Caron L, Binetruy B. The role of MAPKs in adipocyte differentiation and obesity. Biochimie 87: 51–56 (2005)

    Article  CAS  Google Scholar 

  28. Sakaue H, Ogawa W, Matsumoto M, Kuroda S, Takata M, Sugimoto T, Spiegelman BM, Kasuga M. Posttranscriptional control of adipocyte differentiation through activation of phosphoinositide 3-kinase. J. Biol. Chem. 273: 28945–28952 (1998)

    Article  CAS  Google Scholar 

  29. Poudel B, Lim SW, Ki HH, Nepali S, Lee YM, Kim DK. Dioscin inhibits adipogenesis through the AMPK/MAPK pathway in 3T3-L1 cells and modulates fat accumulation in obese mice. Int. J. Mol. Med. 34: 1401–1408 (2014)

    CAS  Google Scholar 

  30. Wang M, Wang JJ, Li J, Park K, Qian X, Ma JX, Zhang SX. Pigment epitheliumderived factor suppresses adipogenesis via inhibition of the MAPK/ERK pathway in 3T3-L1 preadipocytes. Am. J. Physiol.-Endoc. M. 297: E1378-E1387 (2009)

    Google Scholar 

  31. Kimura I, Konishi M, Asaki T, Furukawa N, Ukai K, Mori M, Hirasawa A, Tsujimoto G, Ohta M, Itoh N, Fujimoto M. Neudesin, an extracellular hemebinding protein, suppresses adipogenesis in 3T3-L1 cells via the MAPK cascade. Biochem Bioph. Res. Co. 381: 75–80 (2009)

    Article  CAS  Google Scholar 

  32. Zhang B, Berger J, Zhou G, Elbrecht A, Biswas S, White-Carrington S, Szalkowski D, Moller DE. Insulin-and mitogen-activated protein kinasemediated phosphorylation and activation of peroxisome proliferatoractivated receptor gamma. J. Biol. Chem. 271: 31771–31774 (1996)

    Article  CAS  Google Scholar 

  33. Bost F, Caron L, Marchetti I, Dani C, Le Marchand-Brustel Y, Binetruy B. Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem. J. 361: 621–627 (2002)

    Article  CAS  Google Scholar 

  34. Aouadi M, Laurent K, Prot M, Le Marchand-Brustel Y, Binetruy B, Bost F. Inhibition of p38MAPK increases adipogenesis from embryonic to adult stages. Diabetes. 55: 281–289 (2006)

    Article  CAS  Google Scholar 

  35. Hata K, Nishimura R, Ikeda F, Yamashita K, Matsubara T, Nokubi T, Yoneda T. Differential roles of Smad1 and p38 kinase in regulation of peroxisome proliferator-activating receptor gamma during bone morphogenetic protein 2-induced adipogenesis. Mol. Biol. Cell 14: 545–555 (2003)

    Article  CAS  Google Scholar 

  36. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13: 376–388 (2011)

    Article  CAS  Google Scholar 

  37. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1: 15–25 (2005)

    Article  CAS  Google Scholar 

  38. Gao Y, Zhou Y, Xu A, Wu D. Effects of an AMP-activated protein kinase inhibitor, compound C, on adipogenic differentiation of 3T3-L1 cells. Biol. Pharm. Bull. 31: 1716–1722 (2008)

    Article  CAS  Google Scholar 

  39. Hardie DG, Scott JW, Pan DA, Hudson ER. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 546: 113–120 (2003)

    Article  CAS  Google Scholar 

  40. Holm C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem. Soc. T. 31: 1120–1124 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Seung Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Go, G., Sung, JS., Jee, SC. et al. In vitro anti-obesity effects of sesamol mediated by adenosine monophosphate-activated protein kinase and mitogen-activated protein kinase signaling in 3T3-L1 cells. Food Sci Biotechnol 26, 195–200 (2017). https://doi.org/10.1007/s10068-017-0026-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0026-1

Keywords

Navigation