Skip to main content
Log in

Dietary Saury Oil Reduces Hyperglycemia and Hyperlipidemia in Diabetic KKAy Mice and in Diet-Induced Obese C57BL/6J Mice by Altering Gene Expression

  • Original Article
  • Published:
Lipids

Abstract

We investigated the effect of saury oil on the alleviation of metabolic syndrome in mice. Saury oil contains 18% (w/w/) n-3 polyunsaturated fatty acids (n-3 PUFA) and 35% (w/w) monounsaturated fatty acids (MUFA). Diabetic KKAy mice were fed a 10% soybean oil diet (control) or a 10% saury oil diet for 4 weeks, and diet-induced obese C57BL/6J mice were fed a high-fat diet containing 32% lard (control) or 22% lard plus 10% saury oil for 6 weeks. After the intervention periods, the levels of glucose, insulin and lipids in plasma had decreased significantly for the saury oil diet group, and insulin sensitivity had improved. These favorable changes may be attributed to the increased adiponectin and decreased TNFα and resistin levels in plasma. The saury oil diet also resulted in downregulated expression of the lipogenic genes (SREBP-1, SCD-1, FAS, and ACC) as well as upregulation of the fatty acid oxidative gene, CPT-1, and the energy expenditure-related genes (PGC1α and PGC1β) in white adipose tissue for the diet-induced obese C57BL/6J mice. An increase in n-3 PUFA levels and the concomitant decrease in the n-6/n-3 PUFA level ratio in serum, white adipose tissue, and liver with a saury oil diet are likely to be involved in the beneficial changes to the metabolic indicators. MUFA may also play a positive role in remodeling lipid composition. Based on these mice models, our results suggest a potential use for saury oil for improving metabolic abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

CPT-1:

Carnitine palmitoyltransferase-1

FAS:

Fatty acid synthase

HDL-C:

High-density lipoprotein cholesterol

LDL-C:

Low-density lipoprotein cholesterol

MetS:

Metabolic syndrome

MUFA:

Monounsaturated fatty acids

NEFA:

Nonesterified fatty acids

PGC-1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PGC-1β:

Peroxisome proliferator-activated receptor gamma coactivator 1-beta

PUFA:

Polyunsaturated fatty acids

RT-PCR:

Reverse transcription polymerase chain reaction

SAF:

Saturated fatty acids

SCD-1:

Stearoyl CoA desaturase-1

SREBP-1:

Sterol regulatory element binding protein-1

TAG:

Triacylglycerol

TC:

Total cholesterol

WAT:

White adipose tissue

References

  1. Gupta A, Gupta V (2010) Metabolic syndrome: what are the risks for humans? Biosci Trends 4:204–212

    PubMed  Google Scholar 

  2. Phillips C, Lopez-Miranda J, Perez-Jimenez F, McManus R, Roche HM (2006) Genetic and nutrient determinants of the metabolic syndrome. Curr Opin Cardiol 21:185–193

    Article  PubMed  Google Scholar 

  3. Ruxton CH, Reed SC, Simpson MJ, Millington KJ (2004) The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J Hum Nutr Diet 17:449–459

    Article  PubMed  CAS  Google Scholar 

  4. Perez-Matute P, Perez-Echarri N, Martinez JA, Marti A, Moreno-Aliaga MJ (2007) Eicosapentaenoic acid actions on adiposity and insulin resistance in control and high-fat-fed rats: role of apoptosis, adiponectin and tumour necrosis factor-alpha. Br J Nutr 97:389–398

    Article  PubMed  CAS  Google Scholar 

  5. Mori TA, Bao DQ, Burke V (1999) Dietary fish as a major component of a weight-loss diet: effect on serum lipids, glucose, and insulin metabolism in overweight hypertensive subjects. Am J Clin Nutr 70:817–825

    PubMed  CAS  Google Scholar 

  6. Couet C, Delarue J, Ritz P (1997) Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults. Int J Obes 21:637–643

    Article  CAS  Google Scholar 

  7. Japan Aquatic Oil Association (ed) (1989) Fatty acid composition of fish and shellfish. Korin Press, Tokyo

  8. Ota T, Takagi T, Kosaka S (1980) Changes in lipids of young and adult saury Cololabis saira (Pisces). Mar Ecol Prog Ser 3:11–17

    Article  CAS  Google Scholar 

  9. Pascal JC, Ackman RG (1976) Long-chain monoethylenic alcohol and acid isomers in lipids of copepods and capelin. Chem Phys Lipids 16:219–223

    Article  CAS  Google Scholar 

  10. Hardy R, Mackie P (1969) Seasonal variation in some of the lipid components of sprats (Sprattus sprattus). J Sci Food Agric 20:193–198

    Article  PubMed  CAS  Google Scholar 

  11. Ratnayake WN, Ackman RG (1979) Fatty alcohols in capelin, herring and mackerel oils and muscle lipids: I fatty alcohol details linking dietary copepod fat with certain fish depot fats. Lipids 14:795–803

    Article  PubMed  CAS  Google Scholar 

  12. Graeve M, Kattner G (1992) Species-specific differences in intact wax esters of Calanus hyperboreus and C. finmarchicus from Fram Strait-Greenland Sea. Mar Chem 39:269–281

    Article  CAS  Google Scholar 

  13. Falk-Petersen S, Sargent JR, Tande KS (1987) Lipid composition of zooplankton in relation to the sub-arctic food web. Polar Biol 8:115–120

    Article  CAS  Google Scholar 

  14. Flatmark T, Christiansen EN (1993) Modulation of peroxisomal biogenesis and lipid metabolizing enzymes by dietary factors. In: Gibson G, Lake B (eds) Peroxisomes: biology and importance in toxicology and medicine. Taylor & Francis Ltd, London, pp 247–275

    Google Scholar 

  15. Halvorsen B, Rustan AC, Christiansen EN (1995) Effect of long chain monounsaturated and n-3 polyunsaturated fatty acids on postprandial blood and liver lipids in rats. Scand J Clin Lab Invest 55:469–475

    Article  PubMed  CAS  Google Scholar 

  16. Osterud B, Elvevoll E, Barstad H, Brox J, Halvorsen H, Lia K, Olsen JO, Olsen RO, Sissener C, Rekdal O, Vogild E (1995) Effect of marine oils supplementation on coagulation and cellular activation in whole blood. Lipids 30:1111–1118

    Article  PubMed  CAS  Google Scholar 

  17. Lepage G, Roy CC (1986) Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res 27:114–120

    PubMed  CAS  Google Scholar 

  18. Stefan N, Stumvoll M (2002) Adiponectin—its role in metabolism and beyond. Horm Metab Res 34:469–474

    Article  PubMed  CAS  Google Scholar 

  19. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784–1792

    Article  PubMed  CAS  Google Scholar 

  20. Mantzoros CS, Li T, Manson JE, Meigs JB, Hu FB (2005) Circulating adiponectin levels are associated with better glycemic control, more favorable lipid profile, and reduced inflammation in women with type 2 diabetes. J Clin Endocrinol Metab 90:4542–4548

    Article  PubMed  CAS  Google Scholar 

  21. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176

    Article  PubMed  CAS  Google Scholar 

  22. Hotamisligil GS (1999) The role of TNF-alpha and TNF receptors in obesity and insulin resistance. J Intern Med 245:621–625

    Article  PubMed  CAS  Google Scholar 

  23. Das UN (1999) GLUT-4, tumor necrosis factor, essential fatty acids and daf-genes and their role in insulin resistance and non-insulin dependent diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 60:13–20

    Article  PubMed  CAS  Google Scholar 

  24. Savage DB, Sewter CP, Klenk ES, Segal DG, Vidal-Puig A, Considine RV, O’Rahilly S (2001) Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes 50:2199–2202

    Article  PubMed  CAS  Google Scholar 

  25. Norata GD, Ongari M, Garlaschelli K, Raselli S, Grigore L, Catapano AL (2007) Plasma resistin levels correlate with determinants of the metabolic syndrome. Eur J Endocrinol 156:279–284

    Article  PubMed  CAS  Google Scholar 

  26. Munzberg H (2009) Leptin-signaling pathways and leptin resistance. Forum Nutr 63:123–132

    Article  PubMed  Google Scholar 

  27. Guerre-Millo M (2002) Adipose tissue hormones. J Endocrinol Invest 25:855–861

    PubMed  CAS  Google Scholar 

  28. Saraswathi V, Gao L, Morrow JD, Chait A, Niswender KD, Hasty AH (2007) Fish oil increases cholesterol storage in white adipose tissue with concomitant decreases in inflammation, hepatic steatosis, and atherosclerosis in mice. J Nutr 137:1776–1782

    PubMed  CAS  Google Scholar 

  29. Itoh M, Suganami T, Satoh N, Tanimoto-Koyama K, Yuan X, Tanaka M, Kawano H, Yano T, Aoe S, Takeya M, Shimatsu A, Kuzuya H, Kamei Y, Ogawa Y (2007) Increased adiponectin secretion by highly purified eicosapentaenoic acid in rodent models of obesity and human obese subjects. Arterioscler Thromb Vasc Biol 27:1918–1925

    Article  PubMed  CAS  Google Scholar 

  30. Krebs JD, Browning LM, McLean NK, Rothwell JL, Mishra GD, Moore CS, Jebb SA (2006) Additive benefits of long-chain n-3 polyunsaturated fatty acids and weight-loss in the management of cardiovascular disease risk in overweight hyperinsulinaemic women. Int J Obesity 30:1535–1544

    Article  CAS  Google Scholar 

  31. Das UN (2005) A defect in the activity of ∆5 and ∆6 desaturases may be a factor in pre-disposing to the development of insulin resistance syndrome. Prostaglandins Leukot Essent Fatty Acids 72:343–350

    Article  PubMed  CAS  Google Scholar 

  32. Drevon CA (2005) Fatty acids and the expression of adipokines. Biochim Biophys Acta 1740:287–292

    PubMed  CAS  Google Scholar 

  33. Reseland JE, Anderssen SA, Solvoll K, Hjermann I, Urdal P, Holme I, Drevon CA (2001) Effect of long-term changes in diet and exercise on plasma leptin concentrations. Am J Clin Nutr 73:240–245

    PubMed  CAS  Google Scholar 

  34. Shimano H, Shimomura I, Hammer RE, Herz J, Goldstein JL, Brown MS, Horton JD (1997) Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invest 100:2115–2124

    Article  PubMed  CAS  Google Scholar 

  35. Nakatani T, Kim HJ, Kaburagi Y, Yasuda K, Ezaki O (2003) A low fish oil inhibits SREBP-1 proteolytic cascade, while a high-fish-oil feeding decreases SREBP-1 mRNA in mice liver: relationship to anti-obesity. J Lipid Res 44:369–379

    Article  PubMed  CAS  Google Scholar 

  36. Howell G 3rd, Deng X, Yellaturu C, Park EA, Wilcox HG, Raghow R, Elam MB (2009) N-3 polyunsaturated fatty acids suppress insulin-induced SREBP-1c transcription via reduced trans-activating capacity of LXRalpha. Biochim Biophys Acta 1791:1190–1196

    PubMed  CAS  Google Scholar 

  37. McGarry JD, Brown NF (1997) The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 244:1–14

    Article  PubMed  CAS  Google Scholar 

  38. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  PubMed  CAS  Google Scholar 

  39. Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90

    Article  PubMed  CAS  Google Scholar 

  40. Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM (2006) Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab 3:333–341

    Article  PubMed  CAS  Google Scholar 

  41. Flachs P, Horakova O, Brauner P, Rossmeisl M, Pecina P, Franssen-van Hal N, Ruzickova J, Sponarova J, Drahota Z, Vlcek C, Keijer J, Houstek J, Kopecky J (2005) Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce beta-oxidation in white fat. Diabetologia 48:2365–2375

    Article  PubMed  CAS  Google Scholar 

  42. Whelan J (1996) Antagonistic effects of dietary arachidonic acid and n-3 polyunsaturated fatty acids. J Nutr 126:1086S–1091S

    PubMed  CAS  Google Scholar 

  43. Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    Article  PubMed  CAS  Google Scholar 

  44. Hibbeln JR, Nieminen LR, Blasbalg TL, Riggs JA, Lands WE (2006) Healthy intakes of n-3 and n-6 fatty acids: estimations considering worldwide diversity. Am J Clin Nutr 83:1483S–1493S

    PubMed  CAS  Google Scholar 

  45. Smith BK, Holloway GP, Reza-Lopez S, Jeram SM, Kang JX, Ma DW (2010) A decreased n-6/n-3 ratio in the fat-1 mouse is associated with improved glucose tolerance. Appl Physiol Nutr Metab 35:699–706

    Article  PubMed  CAS  Google Scholar 

  46. Kris-Etherton P, Daniels SR, Eckel RH, Engler M, Howard BV, Krauss RM (2001) AHA scientific statement: summary of the Scientific Conference on Dietary Fatty Acids and Cardiovascular Health. Conference summary from the Nutrition Committee of the American Heart Association. J Nutr 131:1322–1326

    PubMed  CAS  Google Scholar 

  47. Moon JH, Lee JY, Kang SB, Park JS, Lee BW, Kang ES, Ahn CW, Lee HC, Cha BS (2010) Dietary monounsaturated fatty acids but not saturated fatty acids preserve the insulin signaling pathway via IRS-1/PI3 K in rat skeletal muscle. Lipids 45:1109–1116

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the technical assistance of Dr. Toru Moriguchi (Azabu University), Ms. Akiko Harauma, Mr. Nobushige Doisaki and Ms. Kiyomi Furihata in Nippon Suisan Kaisya, Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hong Yang.

About this article

Cite this article

Yang, ZH., Miyahara, H., Takemura, S. et al. Dietary Saury Oil Reduces Hyperglycemia and Hyperlipidemia in Diabetic KKAy Mice and in Diet-Induced Obese C57BL/6J Mice by Altering Gene Expression. Lipids 46, 425–434 (2011). https://doi.org/10.1007/s11745-011-3553-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3553-1

Keywords

Navigation