Skip to main content
Log in

Increased Lipid Peroxidation in LDL from Type-2 Diabetic Patients

  • Original Article
  • Published:
Lipids

Abstract

Increased oxidative stress is associated with type-2 diabetes and related cardiovascular diseases, but oxidative modification of LDL has been partially characterized. Our aim was to compare the lipid and fatty acid composition as well as the redox status of LDL from diabetic patients and healthy subjects. First, to ensure that isolation of LDL by sequential ultracentrifugation did not result in lipid modifications, lipid composition and peroxide content were determined in LDL isolated either by ultracentrifugation or fast-protein liquid chromatography. Both methods resulted in similar concentrations of lipids, fatty acids, hydroxy-octadecadienoic acid (HODE) and malondialdehyde (MDA). Then, LDLs were isolated by ultracentrifugation from eight type-2 diabetic patients and eight control subjects. Compared to control LDL, diabetic LDL contained decreased cholesteryl esters and increased triglyceride concentrations. Ethanolamine plasmalogens decreased by 49%. Proportions of linoleic acid decreased in all lipid classes, while proportions of arachidonic acid increased in cholesteryl esters. Total HODE concentrations increased by 56%, 12- and 15-hydroxy-eicosatetraenoic acid by 161 and 86%, respectively, and MDA levels increased by twofold. α-Tocopherol concentrations, expressed relative to triglycerides, were lower in LDL from patients compared to controls, while γ-tocopherol did not differ. Overall, LDL from type-2 diabetic patients displayed increased oxidative stress. Determination of hydroxylated fatty acids and ethanolamine plasmalogen depletion could be especially relevant in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BHT:

Butylhydroxytoluene

CE:

Cholesteryl ester

DMA:

Dimethylacetal

ELSD:

Evaporative light-scattering detector

Etn-PL:

Ethanolamine phospholipids

FPLC:

Fast-protein liquid chromatography

GPE:

Glycerophosphoethanolamine

HETE:

Hydroxy-eicosatetraenoic acid

HODE:

Hydroxy-octadecadienoic acid

MDA:

Malondialdehyde

MUFA:

Monounsaturated fatty acids

PC:

Phosphatidylcholine

PL:

Phospholipid

PUFA:

Polyunsaturated fatty acids

SFA:

Saturated fatty acids

SM:

Sphingomyelin

TBA:

Thiobarbituric acid

TBARS:

Thiobarbituric acid reactive species

TG:

Triacylglycerols

UC:

Ultracentrifugation

References

  1. Mehta JL, Rasouli N, Sinha AK, Molavi B (2006) Oxidative stress in diabetes: a mechanistic overview of its effects on atherogenesis and myocardial dysfunction. Int J Biochem Cell Biol 38:794–803

    Article  CAS  PubMed  Google Scholar 

  2. Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412

    Article  CAS  PubMed  Google Scholar 

  3. Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792

    Article  CAS  PubMed  Google Scholar 

  4. Griesmacher A, Kindhauser M, Andert SE et al (1995) Enhanced serum levels of thiobarbituric-acid-reactive substances in diabetes mellitus. Am J Med 98:469–475

    Article  CAS  PubMed  Google Scholar 

  5. Gopaul NK, Anggard EE, Mallet AI, Betteridge DJ, Wolff SP, Nourooz-Zadeh J (1995) Plasma 8-epi-PGF2 alpha levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Lett 368:225–229

    Article  CAS  PubMed  Google Scholar 

  6. Bellomo G, Maggi E, Poli M, Agosta FG, Bollati P, Finardi G (1995) Autoantibodies against oxidatively modified low-density lipoproteins in NIDDM. Diabetes 44:60–66

    Article  CAS  PubMed  Google Scholar 

  7. Napoli C, Mancini FP, Corso G et al (1997) A simple and rapid purification procedure minimizes spontaneous oxidative modifications of low density lipoprotein and lipoprotein (a). J Biochem 121:1096–1101

    CAS  PubMed  Google Scholar 

  8. Zambon A, Schmidt I, Beisiegel U, Brunzell JD (1996) Dimeric lipoprotein lipase is bound to triglyceride-rich plasma lipoproteins. J Lipid Res 37:2394–2404

    CAS  PubMed  Google Scholar 

  9. Pruneta V, Autran D, Ponsin G et al (2001) Ex vivo measurement of lipoprotein lipase-dependent very low density lipoprotein (VLDL)-triglyceride hydrolysis in human VLDL: an alternative to the postheparin assay of lipoprotein lipase activity? J Clin Endocrinol Metab 86:797–803

    Article  CAS  PubMed  Google Scholar 

  10. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  11. Seppanen-Laakso T, Laakso I, Vanhanen H, Kiviranta K, Lehtimaki T, Hiltunen R (2001) Major human plasma lipid classes determined by quantitative high-performance liquid chromatography, their variation and associations with phospholipid fatty acids. J Chromatogr B Biomed Sci Appl 754:437–445

    Article  CAS  PubMed  Google Scholar 

  12. Browne RW, Armstrong D (2000) HPLC analysis of lipid-derived polyunsaturated fatty acid peroxidation products in oxidatively modified human plasma. Clin Chem 46:829–836

    CAS  PubMed  Google Scholar 

  13. Therasse J, Lemonnier F (1987) Determination of plasma lipoperoxides by high-performance liquid chromatography. J Chromatogr 413:237–241

    Article  CAS  PubMed  Google Scholar 

  14. Calzada C, Coulon L, Halimi D et al (2007) In vitro glycoxidized low-density lipoproteins and low-density lipoproteins isolated from type 2 diabetic patients activate platelets via p38 mitogen-activated protein kinase. J Clin Endocrinol Metab 92:1961–1964

    Article  CAS  PubMed  Google Scholar 

  15. Grundy SM, Cleeman JI, Daniels SR et al (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 112:2735–2752

    Article  PubMed  Google Scholar 

  16. Wiesner P, Leidl K, Boettcher A, Schmitz G, Liebisch G (2009) Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. J Lipid Res 50:574–585

    Article  CAS  PubMed  Google Scholar 

  17. Kuksis A, Myher JJ, Geher K, Breckenridge WC, Jones GJ, Little JA (1981) Lipid class and molecular species interrelationships among plasma lipoproteins of s subjects. J Chromatogr 224:1–23

    Article  CAS  PubMed  Google Scholar 

  18. Engelmann B, Brautigam C, Thiery J (1994) Plasmalogen phospholipids as potential protectors against lipid peroxidation of low density lipoproteins. Biochem Biophys Res Commun 204:1235–1242

    Article  CAS  PubMed  Google Scholar 

  19. Esterbauer H, Gebicki J, Puhl H, Jurgens G (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 13:341–390

    Article  CAS  PubMed  Google Scholar 

  20. Barre E (2003) A more detailed fatty acid composition of human lipoprotein(a)—a comparison with low density lipoprotein. Chem Phys Lipids 123:99–105

    Article  CAS  PubMed  Google Scholar 

  21. Esterbauer H, Jurgens G, Quehenberger O, Koller E (1987) Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J Lipid Res 28:495–509

    CAS  PubMed  Google Scholar 

  22. Scheek LM, Wiseman SA, Tijburg LB, van Tol A (1995) Dialysis of isolated low density lipoprotein induces a loss of lipophilic antioxidants and increases the susceptibility to oxidation in vitro. Atherosclerosis 117:139–144

    Article  CAS  PubMed  Google Scholar 

  23. Stephens JW, Khanolkar MP, Bain SC (2009) The biological relevance and measurement of plasma markers of oxidative stress in diabetes and cardiovascular disease. Atherosclerosis 202:321–329

    Article  CAS  PubMed  Google Scholar 

  24. Mora S, Otvos JD, Rosenson RS, Pradhan A, Buring JE, Ridker PM (2010) Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women. Diabetes 59:1153–1160

    Article  CAS  PubMed  Google Scholar 

  25. Feingold KR, Grunfeld C, Pang M, Doerrler W, Krauss RM (1992) LDL subclass phenotypes and triglyceride metabolism in non-insulin-dependent diabetes. Arterioscler Thromb 12:1496–1502

    CAS  PubMed  Google Scholar 

  26. Packard CJ (2003) Triacylglycerol-rich lipoproteins and the generation of small, dense low-density lipoprotein. Biochem Soc Trans 31:1066–1069

    Article  CAS  PubMed  Google Scholar 

  27. Verges B (2009) Lipid modification in type 2 diabetes: the role of LDL and HDL. Fundam Clin Pharmacol 23:681–685

    Article  CAS  PubMed  Google Scholar 

  28. Tribble DL, Holl LG, Wood PD, Krauss RM (1992) Variations in oxidative susceptibility among six low density lipoprotein subfractions of differing density and particle size. Atherosclerosis 93:189–199

    Article  CAS  PubMed  Google Scholar 

  29. Jurgens G, Fell A, Ledinski G, Chen Q, Paltauf F (1995) Delay of copper-catalyzed oxidation of low density lipoprotein by in vitro enrichment with choline or ethanolamine plasmalogens. Chem Phys Lipids 77:25–31

    Article  CAS  PubMed  Google Scholar 

  30. Nagan N, Zoeller RA (2001) Plasmalogens: biosynthesis and functions. Prog Lipid Res 40:199–229

    Article  CAS  PubMed  Google Scholar 

  31. Niki E (2009) Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 47:469–484

    Article  CAS  PubMed  Google Scholar 

  32. Mashima R, Onodera K, Yamamoto Y (2000) Regioisomeric distribution of cholesteryl linoleate hydroperoxides and hydroxides in plasma from healthy humans provides evidence for free radical-mediated lipid peroxidation in vivo. J Lipid Res 41:109–115

    CAS  PubMed  Google Scholar 

  33. Liu W, Yin H, Akazawa YO, Yoshida Y, Niki E, Porter NA (2010) Ex vivo oxidation in tissue and plasma assays of hydroxyoctadecadienoates: Z, E/E, E stereoisomer ratios. Chem Res Toxicol 23:986–995

    Article  CAS  PubMed  Google Scholar 

  34. Brenner RR (2003) Hormonal modulation of delta6 and delta5 desaturases: case of diabetes. Prostaglandins Leukot Essent Fatty Acids 68:151–162

    Article  CAS  PubMed  Google Scholar 

  35. Kesavulu MM, Giri R, Kameswara Rao B, Apparao C (2000) Lipid peroxidation and antioxidant enzyme levels in type 2 diabetics with microvascular complications. Diabetes Metab 26:387–392

    CAS  PubMed  Google Scholar 

  36. Schneider M, Verges B, Klein A et al (2004) Alterations in plasma vitamin E distribution in type 2 diabetic patients with elevated plasma phospholipid transfer protein activity. Diabetes 53:2633–2639

    Article  CAS  PubMed  Google Scholar 

  37. Hunt JV, Smith CC, Wolff SP (1990) Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 39:1420–1424

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the subject participants for their contribution. We also thank the nursing staff at the Hospices Civils de Lyon for their help with blood sample collection and some analyses. We acknowledge the French Ministry of Education and Research for RC’s grant. CC is supported by CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Calzada.

About this article

Cite this article

Colas, R., Pruneta-Deloche, V., Guichardant, M. et al. Increased Lipid Peroxidation in LDL from Type-2 Diabetic Patients. Lipids 45, 723–731 (2010). https://doi.org/10.1007/s11745-010-3453-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3453-9

Keywords

Navigation