Skip to main content
Log in

HOCl-Mediated Glycerophosphocholine and Glycerophosphoethanolamine Generation from Plasmalogens in Phospholipid Mixtures

  • Original Article
  • Published:
Lipids

Abstract

Many mammalian tissues and cells contain, in addition to (diacyl) phospholipids, considerable amounts of plasmalogens, which may function as important antioxidants. Apart from the “scavenger” function mediated by the high sensitivity of the vinyl-ether bond, the functional role of plasmalogens is so far widely unknown. Furthermore, there is increasing evidence that plasmalogen degradation products have harmful effects in inflammatory processes. In a previous investigation glycerophosphocholine (GPC) formation was verified as a novel plasmalogen degradation pathway upon oxidation with hypochlorous acid (HOCl), however these investigations were performed in simple model systems. Herein, we examine plasmalogen degradation in a more complex system in order to evaluate if GPC generation is also a major pathway in the presence of other highly unsaturated glycerophospholipids (GPL) representing an additional reaction site of HOCl targets. Using MALDI–TOF mass spectrometry and 31P NMR spectroscopy, we confirmed that the first step of the HOCl-induced degradation of GPL mixtures containing plasmalogens is the attack of the vinyl-ether bond resulting in the generation of 1-lysophosphatidylcholine (lysoPtdCho) or 1-lysophosphatidylethanolamine. In the second step HOCl reacts with the fatty acyl residue in the sn-2 position of 1-lysoPtdCho. This reaction is about three times faster in comparison to comparable diacyl-GPL. Thus, the generation of GPC and glycerophosphoethanolamine (GPE) from plasmalogens are relevant products formed from HOCl attack on the vinyl-ether bond of plasmalogens under pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

amu:

Atomic mass unit

DHA:

Docosahexaenoic acid

DPA:

Docosapentaenoic acid

2-DH-1-LPC:

1-Lyso-2-docosahexaenoyl-sn-glycero-3-phosphocholine

2-DH-1-LPE:

1-Lyso-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine

CerPCho:

Sphingomyelin

DPPA:

1,2-Dipalmitoyl-sn-glycero-3-phosphate

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

GPC:

Glycerophosphocholine

GPE:

Glycerophosphoethanolamine

ChoGpl:

Choline glycerophospholipids

EtnGpl:

Ethanolamine glycerophospholipids

GPL:

Glycerophospholipid

PDHPCether :

1-O-1′-Palmityl-2-docosahexaenoyl-sn-glycero-3-phosphocholine

PDHPCplasm :

1-O-1′-Palmitenyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine

PDHPEplasm :

1-O-1′-Palmitenyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine

PDPPEether :

1-O-1′-Palmityl-2-docosapentaenoyl-sn-glycero-3-phosphoethanolamine

PDPPCether :

1-O-1′-Palmityl-2-docosapentaenoyl-sn-glycero-3-phosphocholine

PDPPCplasm :

1-O-1′-Palmitenyl-2-docosapentaenoyl-sn-glycero-3-phosphocholine

HOCl:

Hypochlorous acid

lysoPtdCho:

Lysophosphatidylcholine

lysoPtdEtn:

Lysophosphatidylethanolamine

LPL:

Lysophospholipid

MALDI-TOF MS:

Matrix-assisted laser desorption & ionization time-of-flight mass spectrometry

1-M-2-LPC:

1-Myristoyl-2-lyso-sn-glycero-3-phosphocholine

MPO:

Myeloperoxidase

MPO–H2O2–Cl :

Myeloperoxidase-hydrogen peroxide-chloride

SAPCplasm :

1-O-1′-Stearenyl-2-arachidonoyl-sn-glycero-3-phosphocholine

SDHPCplasm :

1-O-1′-Stearenyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine

SDHPEplasm :

1-O-1′-Stearenyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine

PakCho:

Plasmanyl choline

PakEtn:

Plasmanyl ethanolamine

PlsCho:

Plasmenyl choline

PlsEtn:

Plasmenyl ethanolamine

PtdCho:

Phosphatidylcholine

PtdEtn:

Phosphatidylethanolamine

PMNL:

Polymorphonuclear leukocytes

PNA:

para-nitroaniline

31P NMR:

31P nuclear magnetic resonance spectroscopy

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

ROS:

Reactive oxygen species

SDHPC:

1-Stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine

1-S-2-LPC:

1-Stearoyl-2-lyso-sn-glycero-3-phosphocholine

References

  1. Zommara M, Tachibana N, Mitsui K, Nakatani N, Sakono M, Ikeda I, Imaizumi K (1995) Inhibitory effect of ethanolamine plasmalogen on iron- and copper-dependent lipid peroxidation. Free Radic Biol Med 18:599–602

    Article  CAS  PubMed  Google Scholar 

  2. Vance JE (1990) Lipoproteins secreted by cultured rat hepatocytes contain the antioxidant 1-alk-1-enyl-2-acylglycerophosphoethanolamine. Biochim Biophys Acta 1045:128–134

    CAS  PubMed  Google Scholar 

  3. Brites P, Waterham HR, Wanders RJA (2004) Functions and biosynthesis of plasmalogens in health and disease. Biochim Biophys Acta 1636:219–231

    CAS  PubMed  Google Scholar 

  4. Messner MC, Albert CJ, Hsu F-F, Ford DA (2006) Selective plasmenyl choline oxidation by hypochlorous acid: formation of lysophosphatidylcholine chlorohydrins. Chem Phys Lipids 144:34–44

    Article  CAS  PubMed  Google Scholar 

  5. Morand OH, Zoeller RA, Raetz CRH (1988) Disappearance of plasmalogens from membranes of animal cells subjected to photosensitized oxidation. J Biol Chem 263:11597–11606

    CAS  PubMed  Google Scholar 

  6. Zoeller RA, Morand OH, Raetz CRH (1988) A possible role for plasmalogens in protecting animal cells against photosensitized killing. J Biol Chem 263:11590–11596

    CAS  PubMed  Google Scholar 

  7. Skaff O, Pattison DI, Davies MJ (2008) The vinyl ether linkages of plasmalogens are favored targets for myeloperoxidase-derived oxidants: a kinetic study. Biochemistry 47:8237–8245

    Article  CAS  PubMed  Google Scholar 

  8. Thai T-P, Rodemer C, Worsch J, Hunziker A, Gorgas K, Just WW (1999) Synthesis of plasmalogens in eye lens epithelial cells. FEBS Lett 456:263–268

    Article  CAS  PubMed  Google Scholar 

  9. Spiteller G (1993) Review: on the chemistry of oxidative stress. J Lipid Mediat 7:199–221

    CAS  PubMed  Google Scholar 

  10. Brosche T, Platt D (1998) The biological significance of plasmalogens in defense against oxidative damage. Exp Gerontol 33:363–369

    Article  CAS  PubMed  Google Scholar 

  11. Khaselev N, Murphy RC (1998) Susceptibility of plasmenyl glycerophosphatidylethanolamine lipids containing arachidonate to oxidative degradation. Free Radic Biol Med 26:275–284

    Article  Google Scholar 

  12. Rosenberger TA, Oki J, Purdon D, Rapoport SI, Murphy EJ (2002) Rapid synthesis and turnover of brain microsomal ether phospholipids in the adult rat. J Lipid Res 43:59–68

    CAS  PubMed  Google Scholar 

  13. Farooqui AA, Yang H-C, Horrocks LA (1995) Plasmalogens, phospholipase A2 and signal transduction. Brain Res Rev 21:152–161

    Article  CAS  PubMed  Google Scholar 

  14. Farooqui AA, Ong W-Y, Horrocks LA (2006) Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurological disorders. Pharmacol Rev 58:591–620

    Article  CAS  PubMed  Google Scholar 

  15. McHowat J, Liu S, Creer MH (1998) Selective hydrolysis of plasmalogen phospholipids by Ca2+-independent PLA2 in hypoxic ventricular myocytes. Am J Physiol 274:C1727–C1737

    CAS  PubMed  Google Scholar 

  16. McHowat J, Creer MH (2000) Selective plasmalogen substrate utilization by thrombin-stimulated Ca2+-independent PLA2 in cardiomyocytes. Am J Physiol Heart Circ Physiol 278:H1933–H1940

    CAS  PubMed  Google Scholar 

  17. Scherrer LA, Gross RW (1989) Subcellular distribution, molecular dynamics and catabolism of plasmalogens in myocardium. Mol Cell Biochem 88:97–105

    Article  CAS  PubMed  Google Scholar 

  18. Han X, Gross RW (1992) Nonmonotonic alterations in the fluorescence anisotropy of polar head group labeled fluorophores during the lamellar to hexagonal phase transition of phospholipids. Biophys J 63:309–316

    Article  CAS  PubMed  Google Scholar 

  19. Gross RW (1984) High plasmalogen and arachidonic acid content of canine myocardial sarcolemma: a fast atom bombardment mass spectroscopic and gas chromatography-mass spectroscopic characterization. Biochemistry 23:158–165

    Article  CAS  PubMed  Google Scholar 

  20. Leßig J, Gey C, Süß R, Schiller J, Glander H-J, Arnhold J (2004) Analysis of the lipid composition of human and boar spermatozoa by MALDI–TOF mass spectrometry, thin layer chromatography and 31P NMR spectroscopy. Comp Biochem Physiol Biochem Mol Biol 137B:265–277

    Article  Google Scholar 

  21. Lenzi A, Picardo M, Gandini L, Dondero F (1996) Lipids of the sperm plasma membrane: from polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. Hum Reprod Update 2:246–256

    Article  CAS  PubMed  Google Scholar 

  22. Goodenowe DB, Cook LL, Liu J, Lu Y, Jayasinghe DA, Ahiahonu PWK, Heath Y, Flax J, Krenitzky KF, Sparks DL, Lerner A, Friedland RP, Kudo T, Kamino K, Morihara T, Takeda M, Wood P (2007) Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer’s disease and dementia. J Lipid Res 48:2485–2498

    Article  CAS  PubMed  Google Scholar 

  23. Hartmann T, Kuchenbecker J, Grimm MOW (2007) Alzheimer’s disease: the lipid connection. J Neurochem 103(Suppl 1):159–170

    Article  CAS  PubMed  Google Scholar 

  24. Weisser M, Vieth M, Stolte M, Riederer P, Pfeuffer R, Leblhuber F, Spiteller G (1997) Dramatic increase of alpha-hydroxyaldehydes derived from plasmalogens in the aged human brain. Chem Phys Lipids 90:135–142

    Article  CAS  PubMed  Google Scholar 

  25. Han X, Holtzman DM, McKeel D Jr (2001) Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem 77:1168–1180

    Article  CAS  PubMed  Google Scholar 

  26. Farooqui AA, Horrocks LA (2001) Plasmalogens: workhouse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245

    Article  CAS  PubMed  Google Scholar 

  27. Dudda A, Spiteller G, Kobelt F (1996) Lipid oxidation products in ischemic porcine heart tissue. Chem Phys Lipids 82:39–51

    Article  CAS  PubMed  Google Scholar 

  28. André A, Juanéda P, Sébédio JL, Chardigny JM (2005) Effects of aging and dietary n-3 fatty acids on rat brain phospholipids: focus on plasmalogens. Lipids 40:799–806

    Article  PubMed  Google Scholar 

  29. Kuczynski B, Reo NV (2006) Evidence that plasmalogen is protective against oxidative stress in the rat brain. Neurochem Res 31:639–656

    Article  CAS  PubMed  Google Scholar 

  30. Brosche T, Brueckmann M, Haase KK, Sieber C, Bertsch T (2007) Decreased plasmalogen concentration as a surrogate marker of oxidative stress in patients presenting with acute coronary syndromes or supraventricular tachycardias. Clin Chem Lab Med 45:689–691

    Article  CAS  PubMed  Google Scholar 

  31. Leβig J, Fuchs B (2009) Plasmalogens in biological systems: their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. Curr Med Chem 16:2021–2041

    Article  Google Scholar 

  32. Klebanoff SJ (1991) Myeloperoxidase: occurrence and biological function. In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology, vol 1. CRC Press, Boca Raton

    Google Scholar 

  33. Winterbourn CC (1985) Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of oxidant to hypochlorite. Biochim Biophys Acta 840:204–210

    CAS  PubMed  Google Scholar 

  34. Pattison DI, Davies MJ (2001) Absolute rate constant for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol 14:1453–1464

    Article  CAS  PubMed  Google Scholar 

  35. Hawkins CL, Pattison DI, Davies MJ (2002) Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 25:259–274

    Article  Google Scholar 

  36. Schiller J, Arnhold J, Gründer W, Arnold K (1994) The action of hypochlorous acid on polymeric components of cartilage. Biol Chem Hoppe-Seyler 375:167–172

    CAS  PubMed  Google Scholar 

  37. Prütz WA (1996) Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch Biochem Biophys 332:110–120

    Article  PubMed  Google Scholar 

  38. Arnhold J, Osipov AN, Spalteholz H, Panasenko OM, Schiller J (2001) Effects of hypochlorous acid on unsaturated phosphatidylcholines. Free Radic Biol Med 31:1111–1119

    Article  CAS  PubMed  Google Scholar 

  39. Winterbourn CC, van den Berg JJM, Roitman E, Kuypers FA (1992) Chlorohydrin-formation from unsaturated fatty acids reacted with hypochlorous acid. Arch Biochem Biophys 296:547–555

    Article  CAS  PubMed  Google Scholar 

  40. Van den Berg JJM, Winterbourn CC, Kuypers FA (1993) Hypochlorous-acid mediated modification of cholesterol and phospholipids: analysis by gas chromatography-mass spectrometry. J Lipid Res 34:2005–2012

    PubMed  Google Scholar 

  41. Thukkani AK, Hsu F-F, Crowley JR, Wysolmerski RB, Albert CJ, Ford DA (2002) Reactive chlorinating species produced during neutrophil activation target tissue plasmalogens. J Biol Chem 277:3842–3849

    Article  CAS  PubMed  Google Scholar 

  42. Albert CJ, Crowley JR, Hsu F-F, Thukkani AK, Ford DA (2001) Reactive chlorinating species produced by myeloperoxidase target the vinyl ether bond of plasmalogens. J Biol Chem 276:23733–23741

    Article  CAS  PubMed  Google Scholar 

  43. Thukkani AK, Albert CJ, Wildsmith KR, Messner MC, Martinson BD, Hsu F-F, Ford DA (2003) Myeloperoxidase-derived reactive chlorinating species from human monocytes target plasmalogens in low density lipoprotein. J Biol Chem 278:36365–36372

    Article  CAS  PubMed  Google Scholar 

  44. Arnhold J, Osipov AN, Spalteholz H, Panasenko OM, Schiller J (2002) Formation of lysophospholipids from unsaturated phosphatidylcholines under the influence of hypochlorous acid. Biochim Biophys Acta 1572:91–100

    CAS  PubMed  Google Scholar 

  45. Panasenko OM, Schiller J, Spalteholz H, Arnhold J (2003) Myeloperoxidase-induced formation of chlorohydrins and lysophospholipids from unsaturated phosphatidylcholines. Free Radic Biol Med 34:553–562

    Article  CAS  PubMed  Google Scholar 

  46. Khaselev N, Murphy RC (2000) Structural characterization of oxidized phospholipid products derived from arachidonate: containing plasmenyl glycerophosphocholine. J Lipid Res 41:564–572

    CAS  PubMed  Google Scholar 

  47. Leßig J, Schiller J, Arnhold J, Fuchs B (2007) Hypochlorous acid-mediated generation of glycerophosphocholine from unsaturated plasmalogen glycerophosphocholine lipids. J Lipid Res 48:1316–1324

    Article  PubMed  Google Scholar 

  48. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  PubMed  Google Scholar 

  49. Morris JC (1966) Acid ionization constant of HOCl from 5 to 35 degrees. J Phys Chem 70:133–140

    Article  Google Scholar 

  50. Fuchs B, Arnold K, Schiller J (2008) Mass spectrometry of biological molecules. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester

    Google Scholar 

  51. Schiller J, Süß R, Arnhold J, Fuchs B, Leßig J, Müller M, Petković M, Spalteholz H, Zschörnig O, Arnold K (2004) Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog Lipid Res 43:443–478

    Article  Google Scholar 

  52. Benard S, Arnhold J, Lehnert M, Schiller J, Arnold K (1999) Experiments towards quantification of saturated and polyunsaturated diacylglycerols by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry. Chem Phys Lipids 100:115–125

    Article  CAS  Google Scholar 

  53. Asbury GR, Al-Saad K, Siems WF, Hannan RM, Hill HH (1999) Analysis of triacylglycerols and whole oils by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Mass Spectrom 10:983–991

    Article  CAS  Google Scholar 

  54. Estrada R, Yappert MC (2004) Alternative approaches for the detection of various phospholipid classes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 39:412–422

    Article  CAS  PubMed  Google Scholar 

  55. Pearce JM, Komoroski RA (2000) Analysis of phospholipid molecular species in brain by 31P NMR spectroscopy. Magn Reson Med 44:215–223

    Article  CAS  PubMed  Google Scholar 

  56. London E, Feigenson GW (1979) Phosphorous NMR analysis of phospholipids in detergents. J Lipid Res 20:408–412

    CAS  PubMed  Google Scholar 

  57. Puppato A, DuPré DB, Stolowich N, Yappert MC (2007) Effect of temperature and pH on 31P nuclear magnetic resonances of phospholipids in cholate micelles. Chem Phys Lipids 150:176–185

    Article  CAS  PubMed  Google Scholar 

  58. Schiller J, Müller M, Fuchs B, Arnold K, Huster D (2007) 31P NMR spectroscopy of phospholipids: from micelles to membranes. Curr Anal Chem 3:283–301

    Article  CAS  Google Scholar 

  59. Plückthun A, Dennis EA (1982) Acyl and phosphoryl migration in lysophospholipids: importance in phospholipid synthesis and phospholipase specificity. Biochemistry 21:1743–1750

    Article  PubMed  Google Scholar 

  60. Fuchs B, Schober C, Richter G, Nimptsch A, Süß R, Schiller J (2008) The reactions between HOCl and differently saturated phospholipids: physiological relevance, products and methods of evaluation. Mini Rev Org Chem 5:254–261

    Article  CAS  Google Scholar 

  61. Richter G, Schober C, Süß R, Fuchs B, Birkemeyer C, Schiller J (2008) Comparison of the positive and negative ion electrospray ionization and matrix-assisted laser desorption ionization time-of-flight mass spectra of the reaction products of phosphatidylethanolamines and hypochlorous acid. Anal Biochem 376:157–159

    Article  CAS  PubMed  Google Scholar 

  62. Fuchs B, Jakop U, Göritz F, Hermes R, Hildebrandt T, Schiller J, Müller K (2009) MALDI-TOF “fingerprint” phospholipid mass spectra allow the differentiation between ruminantia and feloideae spermatozoa. Theriogenology 71:568–575

    Article  CAS  PubMed  Google Scholar 

  63. Reiss D, Beyer K, Engelmann B (1997) Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem J 323:807–814

    CAS  PubMed  Google Scholar 

  64. Deepinder F, Chowdary HT, Agarwal A (2007) Role of metabolomic analysis of biomarkers in the management of male infertility. Expert Rev Mol Diagn 7:351–358

    Article  CAS  PubMed  Google Scholar 

  65. Burt CT, Ribolow H (1994) Glycerol phosphorylcholine (GPC) and serine ethanolamine phosphodiester (SEP): evolutionary mirrored metabolites and their potential metabolic roles. Comp Biochem Physiol Biochem Mol Biol 108B:11–20

    CAS  Google Scholar 

  66. Ribolow H, Burt C (1987) Analysis of lipid metabolism in semen and its implications. In: McCarthy S, Hazeline F (eds) Magnetic resonance of the reproductive system, Slack, Thorofare

  67. Burg MB (1995) Molecular basis of osmotic regulation. Am J Physiol 268:F983–F996

    CAS  PubMed  Google Scholar 

  68. Maeba R, Maeda T, Kinoshita M, Takao K, Takenaka H, Kusano J, Yoshimura N, Takeoka Y, Yasuda D, Okazaki T, Teramoto T (2007) Plasmalogens in human serum positively correlate with high-density lipoprotein and decrease with aging. J Atheroscler Thromb 14:12–18

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the German Research Council (DFG Schi 476/5-1, FU 771/1-1 and Gl 199/4-3) and the Federal Ministry of Education and Research (Grant BMBF 0313836). The kind gift of boar spermatozoa samples by Dr. Karin Müller and Ulrike Jakop is gratefully acknowledged. We would also like to thank the Translational Centre for Regenerative Medicine (TRM) Leipzig for the possibility to use the selective 31P dual NMR probe. Finally, we are greatly indebted to Dr. Jürgen Schiller for careful proof-reading of the final manuscript version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beate Fuchs.

About this article

Cite this article

Leßig, J., Fuchs, B. HOCl-Mediated Glycerophosphocholine and Glycerophosphoethanolamine Generation from Plasmalogens in Phospholipid Mixtures. Lipids 45, 37–51 (2010). https://doi.org/10.1007/s11745-009-3365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-009-3365-8

Keywords

Navigation