Skip to main content
Log in

Differential Expression of Lipid Metabolism Related Genes in Porcine Muscle Tissue Leading to Different Intramuscular Fat Deposition

  • Original Article
  • Published:
Lipids

Abstract

Intramuscular fat (IMF) content affects meat quality and varies in different pig breeds. However, the underlying mechanisms of different IMF depositions in different genetic backgrounds of pigs have not been fully elucidated as yet. Lipid metabolism theoretically contributes to the variation of IMF content. The expression levels of genes and proteins as well as enzyme activities implicated in muscle lipid metabolism were investigated, which included lipogenetic genes (SREBP-1c and FAS), fatty acid transporting genes (H-FABP and A-FABP), fatty acid oxidative gene (CPT-1B) and lipolytic genes (ATGL and HSL) as well as the desaturated fatty acid gene (SCD). Longissimus muscle samples were collected from fatty Wujin pigs and lean Landrace pigs. Results showed that the average daily gain of Wujin pigs was lower than that of Landrace pigs. Wujin pigs had greater adipocyte diameter, IMF content and PUFA percentage than that of Landrace pigs. Compared with Landrace pigs, Wujin pigs exhibited higher expression levels, both in mRNA and protein, of FAS, SREBP-1c, SCD, A-FABP and H-FABP genes and lower expression levels of CPT-1B, HSL and ATGL genes. Overall, Wujin pigs possessed higher mRNA abundance, protein expression or enzyme activities of anabolism, fatty acid transportation and desaturation, and lower catabolism. Therefore, the mechanism of higher IMF content in fatty pigs may be due to the higher capacity of lipogenesis and fatty acid transportation and the lower capacity of lipolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IMF:

Intramuscular fat

RT-PCR:

Reverse transcription and polymerase chain reaction

SREBP-1c:

Sterol regulatory element binding protein 1c

FAS:

Fatty acid synthase

H-FABP:

Heart(H)-type fatty acid binding proteins

A-FABP:

Adipocyte (A)-fatty acid binding proteins

ATGL:

Adipose triglyceride lipase

CPT-1B:

Carnitine palmitoyltransferase-1B

HSL:

Hormone sensitive lipase

SCD:

Stearoyl CoA desaturase

MUFA:

Monounsaturated fatty acid

PUFA:

Polyunsaturated fatty acid

SFA:

Saturated fatty acid

UFA:

Unsaturated fatty acid

References

  1. Fernandez X, Monin G, Talmant A, Mourot J, Lebret B (1999) Influence of intramuscular fat content on the quality of pig meat—1. Composition of the lipid fraction and sensory characteristics of m. longissimus lumborum. Meat Sci 53:59–65

    Article  CAS  Google Scholar 

  2. Sellier P (1998) Genetics of meat and carcass traits. In: The genetics of the pig. Rothschild MF, Ruvinsky A (eds) CAB International, Wallingford, UK p 463

  3. Kinyamu HK, Ewan RC (1994) Energy and protein metabolism of the Chinese pig. J Anim Sci 72:2068–2074

    CAS  PubMed  Google Scholar 

  4. Yen JT, Nienaber JA, Klindt J, Crouse JD (1991) Effect of ractopamine on growth, carcass traits, and fasting heat production of US contemporary crossbred and Chinese Meishan pure- and crossbred pigs. J Anim Sci 69:4810–4817

    CAS  PubMed  Google Scholar 

  5. Young LD (1992) Comparison of Meishan, Fengjing, Minzhu and Duroc swine: effects on postweaning growth, feed efficiency, and carcass traits. J Anim Sci 70:2020–2029

    CAS  PubMed  Google Scholar 

  6. Zhang X, Ge CR, Zhao SM, Lai H, Li CQ, Gao SZ (2008) Effects of dietary composition and digestive energy levels on meat quality in Wujin Pigs. Chin J Anim Nutri 20:58–65

    Google Scholar 

  7. Ge CR, Zhao SM, Zhang X, Lai H, Li CQ, Gao SZ (2008) Effects of dietary protein levels on meat quality in Wujin Pigs. Acta Veter Zoote Sini 39:1692–1700

    CAS  Google Scholar 

  8. Pethick DW, Harper GS, Oddy VH (2004) Growth, development and nutritional manipulation of marbling in cattle: a review. Aust J Exp Agric 44:705–715

    Article  Google Scholar 

  9. Ding ST, Schinkel AP, Weber TE, Mersmann HJ (2000) Expression of porcine transcription factors and genes related to fatty acid metabolism in different tissues and genetic populations. J Anim Sci 78:2127–2134

    CAS  PubMed  Google Scholar 

  10. Reiter SS, Halsey CHC, Stronach BM, Bartosh JL, Owsley WF, Bergen WG (2007) Lipid metabolism related gene-expression profiling in liver, skeletal muscle and adipose tissue in crossbred Duroc and Pietrain pigs. Comp Biochem Phys D 2:200–206

    Google Scholar 

  11. Scott RA, Cornelius SG, Mersmann HJ (1981) Effects of age on lipogenesis and lipolysis in lean and obese swine. J Anim Sci 52:505–511

    CAS  PubMed  Google Scholar 

  12. Mourot J, Kouba M (1998) Lipogenic enzyme activities in muscles of growing Large White and Meishan pigs. Livest Prod Sci 55:127–133

    Article  Google Scholar 

  13. Bernlohr DA, Jenkins AE, Bennaars AA (2002) Adipose tissue and lipid metabolism. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes, 4th edn. Elsevier, Amsterdam, pp 263–289

    Google Scholar 

  14. Etherton TD, Chung CS (1981) Preparation, characterization, and insulin sensitivity of isolated swine adipocytes: comparison with adipose tissue slices. J Lipid Res 22:1053–1059

    CAS  PubMed  Google Scholar 

  15. Ingle DL, Bauman DE, Mellenberger RW, Johnson DE (1973) Lipogenesis in the ruminant: effect of fasting and refeeding on fatty acid synthesis and enzymatic activity of sheep adipose tissue. J Nutr 103:1479–1488

    CAS  PubMed  Google Scholar 

  16. Osterlund TB, Danielsson ED, Contreras JA, Edren G, Davis RC, Schotz MC, Holm C (1996) Domain-structure analysis of recombinant rat hormone-sensitive lipase. Biochem J 319:411–420

    CAS  PubMed  Google Scholar 

  17. Bieber LL, Abraham T, Helmrath T (1972) A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal Biochem 50:509–518

    Article  CAS  PubMed  Google Scholar 

  18. Archibeque SL, Lunt DK, Tume RK, Smith SB (2005) Fatty acid indices of stearoyl CoA desaturase activity do not reflect actual stearoyl Co-A desaturase enzyme activity in adipose tissues of beef steers finished with corn-, flaxseed-, or sorghum- based diets. J Anim Sci 83:1153–1166

    CAS  PubMed  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  20. Doran O, Moule SK, Teye GA, Whittington FM, Hallett KG, Wood JD (2006) A reduced protein diet induces stearoyl-CoA desaturase protein expression in pig muscle but not in subcutaneous adipose tissue: relationship with intramuscular lipid formation. Brit J Nutr 95:609–617

    Article  CAS  PubMed  Google Scholar 

  21. Mersmann HJ, Pond WG, Yen JT (1982) Plasma glucose, insulin and lipids during growth of genetically lean and obese swine. Growth 46:189–198

    CAS  PubMed  Google Scholar 

  22. Campion DR, Hausman GJ, Meredith FI (1983) Skeletal muscle metabolism in neonatal lean and obese pigs. J Anim Sci 57:26–33

    CAS  PubMed  Google Scholar 

  23. Hauser N, Mourot J, De Clercq L, Genart C, Remacle C (1997) The cellularity of developing adipose tissues in Pietrain and Meishan pigs. Reprod Nutr Dev 37:617–625

    Article  CAS  PubMed  Google Scholar 

  24. Fernandez X, Monin G, Talmant A, Mourot J, Lebret B (1999) Influence of intramuscular fat content on the quality of pig meat—2. Consumer acceptability of m. longissimus lumborum. Meat Sci 53:67–72

    Article  Google Scholar 

  25. Woollett LA, Spady DK, Dietschy JM (1992) Saturated and unsaturated fatty acid independently regulate low density lipoprotein receptor activity and production rate. J Lipid Res 33:77–88

    CAS  PubMed  Google Scholar 

  26. Rudel LL, Park JS, Sawyer JK (1995) Compared with dietary monounsaturated and saturated fat, polyunsaturated fat protects African green monkeys from coronary artery atherosclerosis. Arterioscler Thromb Vasc Biol 15:2101–2110

    CAS  PubMed  Google Scholar 

  27. Smith SB, Mersmann HJ, Smith EO, Britain KG (1999) Stearoyl-coenzyme A desaturase gene expression during growth in adipose tissue from obese and crossbred pigs. J Anim Sci 77:1710–1716

    CAS  PubMed  Google Scholar 

  28. Morales J, Perez JF, Baucells MD, Mourot J, Gasa J (2002) Comparative digestibility and lipogenic activity in Landrace and Iberian finishing pigs fed ad libitum corn- and corn–sorghum–acorn-based diets. Livest Prod Sci 77:195–205

    Article  Google Scholar 

  29. Martin RJ, Herbein JH (1976) A comparison of the enzyme levels and the in vitro utilization of various substrates for lipogenesis in pair-fed lean and obese pigs. Proc Soc Exp Bio Med 151:231–235

    CAS  Google Scholar 

  30. Sul HS, Wang D (1998) Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu Rev Nutr 18:331–351

    Article  CAS  PubMed  Google Scholar 

  31. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109:1125–1131

    CAS  PubMed  Google Scholar 

  32. Mersmann HJ (1985) Adipose tissue lipolytic rate in genetically obese and lean swine. J Anim Sci 60:131–135

    CAS  PubMed  Google Scholar 

  33. Mersmann HJ, MacNeil MD (1985) Relationship of plasma lipid concentrations to fat deposition in pigs. J Anim Sci 61:122–128

    CAS  PubMed  Google Scholar 

  34. Mersmann HJ (1986) Postnatal expression of adipose tissue metabolic activity associated with a porcine genetic obesity. J Anim Sci 63:741–746

    CAS  PubMed  Google Scholar 

  35. Buhlinger CA, Wangsness PJ, Martin RJ, Ziegler JH (1978) Body composition, in vitro lipid metabolism and skeletal muscle characteristics in fast-growing, lean and in slow-growing, obese pigs at equal age and weight. Growth 42:225–236

    CAS  PubMed  Google Scholar 

  36. Deiuliis JA, Shin J, Bae D, Azain MJ, Barb R, Lee K (2008) Developmental, hormonal, and nutritional regulation of porcine adipose triglyceride lipase (ATGL). Lipids 43:215–225

    Article  CAS  PubMed  Google Scholar 

  37. Mersmann HJ (1998) Lipoprotein and hormone-sensitive lipases in porcine adipose tissue. J Anim Sci 76:1396–1404

    CAS  PubMed  Google Scholar 

  38. Gerbens F, de Koning DJ, Harders FL, Meuwissen THE, Janss LLG, Groenen MA, Veerkamp JH, Van Arendonk JA, te Pas MF (2000) The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan cross bred pigs. J Anim Sci 78:552–559

    CAS  PubMed  Google Scholar 

  39. Gerbens F, Jansen A, van Erp AJM, Harders F, Meuwissen THE, Rettenberger G, Veerkamp JH, te Pas MFW (1998) The adipocyte fatty acid-binding protein locus: characterization and association with intramuscular fat content in pigs. Mamm Genome 9:1022–1026

    Article  CAS  PubMed  Google Scholar 

  40. Gerbens F, Rettenberger G, Lenstra JA, Veerkamp JH, te Pas MFW (1997) Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein. Mamm Genome 8:328–331

    Article  CAS  PubMed  Google Scholar 

  41. Gerbens F, van Erp AJM, Harders FL, Verburg FJ, Meuwissen THE, Veerkamp JH, te Pas MFW (1999) Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. J Anim Sci 77:846–852

    CAS  PubMed  Google Scholar 

  42. Chmurzynska A (2006) The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet 47:39–48

    PubMed  Google Scholar 

  43. Murphy Eric J, Barcelo-Coblijn Gwendolyn, Binas Bert, Glatz Jan FC (2004) Heart fatty acid uptake is decreased in heart fatty acid-binding protein gene-ablated mice. J Biol Chem 279:34481–34488

    Article  CAS  PubMed  Google Scholar 

  44. Prows DR, Murphy EJ, Schroeder F (1995) Lipids. Intestinal and liver fatty acid binding proteins differentially affect fatty acid uptake and esterification in L-cells 30:907–910

    CAS  Google Scholar 

  45. Murphy EJ, Prows D, Stiles T, Schroeder F (2000) Liver and intestinal fatty acid-binding protein expression increases phospholipid content and alters phospholipid fatty acid composition in L-cell fibroblasts. Lipids 35:729–738

    Article  CAS  PubMed  Google Scholar 

  46. Prows DR, Murphy EJ, Moncecchi D, Schroeder F (1996) Intestinal fatty acid-binding protein expression stimulates fibroblast fatty acid esterification. Chem Phys Lipids 84:47–56

    Article  CAS  PubMed  Google Scholar 

  47. Murphy EJ, Prows DR, Jefferson JR, Schroeder F (1996) Liver fatty acid-binding protein expression in transfected fibroblasts stimulates fatty acid uptake and metabolism. Biochim Biophys Acta-Lipids Lipid Metab 1301:191–198

    Article  Google Scholar 

  48. Damon M, Louveau I, Lefaucheur L, Lebret B, Vincent A, Leroy P, Sanchez MP, Herpin P, Gondret F (2006) Number of intramuscular adipocytes and fatty acid binding protein-4 content are significant indicators of intramuscular fat level in crossbred Large White Duroc pigs. J Anim Sci 84:1083–1092

    CAS  PubMed  Google Scholar 

  49. Li B, Zerby HN, Lee K (2007) Heart fatty acid binding protein is upregulated during porcine adipocyte development. J Anim Sci 85:1651–1659

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Foundation Research Development Project of China (973 Project, No. 2007CB116201) and Natural Science Foundation Key Project of Yunnan Province (No. 2005C0008Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Gao.

About this article

Cite this article

Zhao, S.M., Ren, L.J., Chen, L. et al. Differential Expression of Lipid Metabolism Related Genes in Porcine Muscle Tissue Leading to Different Intramuscular Fat Deposition. Lipids 44, 1029–1037 (2009). https://doi.org/10.1007/s11745-009-3356-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-009-3356-9

Keywords

Navigation