Skip to main content
Log in

Artificial Rearing of Infant Mice Leads to n-3 Fatty Acid Deficiency in Cardiac, Neural and Peripheral Tissues

  • Original Article
  • Published:
Lipids

Abstract

The ability to control the fatty acid content of the diet during early development is a crucial requirement for a one-generation model of docosahexaenoic acid (DHA; 22:6n3) deficiency. A hand feeding method using artificial rearing (AR) together with sterile, artificial milk was employed for feeding mice from postnatal day 2–15. The pups were fed an n-3 fatty acid adequate (3% α-linolenic acid (LNA; 18:3n3) + 1% 22:6n3) or a deficient diet (0.06% 18:3n3) with linoleic acid (LA; 18:2n6) as the only dietary source of essential fatty acids by AR along with a dam-reared control group (3.1% 18:3n3). The results indicate that restriction of n-3 fatty acid intake during postnatal development leads to markedly lower levels of brain, retinal, liver, plasma and heart 22:6n3 at 20 weeks of age with replacement by docosapentaenoic acid (DPAn6; 22:5n6), arachidonic acid (ARA; 20:4n6) and docosatetraenoic acid (DTA; 22:4n6). A detailed analysis of phospholipid classes of heart tissue indicated that phosphatidylethanolamine, phosphatidylcholine and cardiolipin were the major repositories of 22:6n3, reaching 40, 29 and 15%, respectively. A novel heart cardiolipin species containing four 22:6n3 moieties is described. This is the first report of the application of artificially rearing to mouse pup nutrition; this technique will facilitate dietary studies of knockout animals as well as the study of essential fatty acid (EFA) functions in the cardiovascular, neural and other organ systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AR:

Artificial rearing

n-3 Adq:

n-3 Fatty acid adequate group

n-3 Def:

n-3 Fatty acid deficient group

References

  1. Moriguchi T, Lim SY, Greiner R, Lefkowitz W, Loewke J, Hoshiba J, Salem N Jr (2004) Effects of an n-3-deficient diet on brain, retina, and liver fatty acyl composition in artificially reared rats. J Lipid Res 45:1437–1445

    Article  PubMed  CAS  Google Scholar 

  2. Ward G, Woods J, Reyzer M, Salem N Jr (1996) Artificial rearing of infant rats on milk formula deficient in n-3 essential fatty acids: a rapid method for the production of experimental n-3 deficiency. Lipids 31:71–77

    Article  PubMed  CAS  Google Scholar 

  3. Lim SY, Hoshiba J, Moriguchi T, Salem N Jr (2005) N-3 fatty acid deficiency induced by a modified artificial rearing method leads to poorer performance in spatial learning tasks. Pediatr Res 58:741–748

    Article  PubMed  CAS  Google Scholar 

  4. Hoshiba J (2004) Method for hand-feeding mouse pups with nursing bottles. Contemp Top Lab Anim Sci 43:50–53

    PubMed  CAS  Google Scholar 

  5. Lim SY, Hoshiba J, Salem N Jr (2005) An extraordinary degree of structural specificity is required in neural phospholipids for optimal brain function: n-6 docosapentaenoic acid substitution for docosahexaenoic acid leads to a loss in spatial task performance. J Neurochem 95:848–857

    Article  PubMed  CAS  Google Scholar 

  6. Leaf A, Kang JX (1996) Prevention of cardiac sudden death by N-3 fatty acids: a review of the evidence. J Intern Med 240:5–12

    Article  PubMed  CAS  Google Scholar 

  7. Ku K, Oku H, Kaneda T, Onoe M, Zhang Z (1999) Beneficial effects of omega-3 fatty acid treatment on the recovery of cardiac function after cold storage of hyperlipidemic rats. Metabolism 48:1203–1209

    Article  PubMed  CAS  Google Scholar 

  8. Peltier S, Malaisse WJ, Portois L, Demaison L, Novel-Chate V, Chardigny JM, Sebedio JL, Carpentier YA, Leverve XM (2006) Acute in vivo administration of a fish oil-containing emulsion improves post-ischemic cardiac function in n-3-depleted rats. Int J Mol Med 18:741–749

    PubMed  CAS  Google Scholar 

  9. Portois L, Peltier S, Sener A, Malaisse WJ, Carpentier YA (2008) Perturbation of phospholipid and triacylglycerol fatty acid positional location in the heart of rats depleted of n-3 long-chain polyunsaturates. Nutr Res 28:51–57

    Article  PubMed  CAS  Google Scholar 

  10. Mori TA, Bao DQ, Burke V, Puddey IB, Beilin LJ (1999) Docosahexaenoic acid but not eicosapentaenoic acid lowers ambulatory blood pressure and heart rate in humans. Hypertension 34:253–260

    PubMed  CAS  Google Scholar 

  11. Christensen JH, Korup E, Aaroe J, Toft E, Moller J, Rasmussen K, Dyerberg J, Schmidt EB (1997) Fish consumption, n-3 fatty acids in cell membranes, and heart rate variability in survivors of myocardial infarction with left ventricular dysfunction. Am J Cardiol 79:1670–1673

    Article  PubMed  CAS  Google Scholar 

  12. Marchioli R, Barzi F, Bomba E, Chieffo C, Di Gregorio D, Di Mascio R, Franzosi MG, Geraci E, Levantesi G, Maggioni AP, Mantini L, Marfisi RM, Mastrogiuseppe G, Mininni N, Nicolosi GL, Santini M, Schweiger C, Tavazzi L, Tognoni G, Tucci C, Valagussa F (2002) Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)-Prevenzione. Circulation 105:1897–1903

    Article  PubMed  CAS  Google Scholar 

  13. Charnock JS, Abeywardena MY, McLennan PL (1986) Comparative changes in the fatty-acid composition of rat cardiac phospholipids after long-term feeding of sunflower seed oil- or tuna fish oil-supplemented diets. Ann Nutr Metab 30:393–406

    Article  PubMed  CAS  Google Scholar 

  14. McLennan PL (2001) Myocardial membrane fatty acids and the antiarrhythmic actions of dietary fish oil in animal models. Lipids 36(Suppl):S111–S114

    Article  PubMed  CAS  Google Scholar 

  15. Nair SS, Leitch J, Falconer J, Garg ML (1999) Cardiac (n-3) non-esterified fatty acids are selectively increased in fish oil-fed pigs following myocardial ischemia. J Nutr 129:1518–1523

    PubMed  CAS  Google Scholar 

  16. Kramer JK (1980) Comparative studies on composition of cardiac phospholipids in rats fed different vegetable oils. Lipids 15:651–660

    Article  PubMed  CAS  Google Scholar 

  17. Garg ML, Leitch J, Blake RJ, Garg R (2006) Long-chain n-3 polyunsaturated fatty acid incorporation into human atrium following fish oil supplementation. Lipids 41:1127–1132

    Article  PubMed  CAS  Google Scholar 

  18. Yajima M, Kanno T, Yajima T (2006) A chemically derived milk substitute that is compatible with mouse milk for artificial rearing of mouse pups. Exp Anim 55:391–397

    Article  PubMed  CAS  Google Scholar 

  19. Yajima M, Hoshiba J, Terahara M, Yajima T (2007) Reduced thymic size and numbers of splenic CD4+ and CD8+ cells in artificially reared mouse pups. Biosci Biotechnol Biochem 71:2420–2427

    Article  PubMed  CAS  Google Scholar 

  20. Kanno T, Koyanagi N, Katoku Y, Yonekubo A, Yajima T, Kuwata T, Kitagawa H, Harada E (1997) Simplified preparation of a refined milk formula comparable to rat’s milk: influence of the formula on development of the gut and brain in artificially reared rat pups. J Pediatr Gastroenterol Nutr 24:242–252

    Article  PubMed  CAS  Google Scholar 

  21. Philipps AF, Anderson GG, Dvorak B, Williams CS, Lake M, Lebouton AV, Koldovsky O (1997) Growth of artificially fed infant rats: effect of supplementation with insulin-like growth factor I. Am J Physiol 272:R1532–R1539

    PubMed  CAS  Google Scholar 

  22. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    PubMed  CAS  Google Scholar 

  23. Folch J, Lees M, Sloane Stanley G (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  24. Morrison W, Smith L (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J Lipid Res 5:600–608

    PubMed  CAS  Google Scholar 

  25. Salem N Jr, Reyzer M, Karanian J (1996) Losses of arachidonic acid in rat liver after alcohol inhalation. Lipids 31(Suppl):S153–S156

    Article  PubMed  CAS  Google Scholar 

  26. Lepage G, Roy CC (1986) Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res 27:114–120

    PubMed  CAS  Google Scholar 

  27. Masood A, Stark KD, Salem N Jr (2005) A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies. J Lipid Res 46:2299–2305

    Article  PubMed  CAS  Google Scholar 

  28. Lesnefsky EJ, Stoll MS, Minkler PE, Hoppel CL (2000) Separation and quantitation of phospholipids and lysophospholipids by high-performance liquid chromatography. Anal Biochem 285:246–254

    Article  PubMed  CAS  Google Scholar 

  29. Wen Z, Kim HY (2004) Alterations in hippocampal phospholipid profile by prenatal exposure to ethanol. J Neurochem 89:1368–1377

    Article  PubMed  CAS  Google Scholar 

  30. Ma YC, Kim HY (1995) Development of the on-line high-performance liquid chromatography/thermospray mass spectrometry method for the analysis of phospholipid molecular species in rat brain. Anal Biochem 226:293–301

    Article  PubMed  CAS  Google Scholar 

  31. Kim HY, Wang TC, Ma YC (1994) Liquid chromatography/mass spectrometry of phospholipids using electrospray ionization. Anal Chem 66:3977–3982

    Article  PubMed  CAS  Google Scholar 

  32. Charnock JS, Abeywardena MY, Tan D, McLennan PL (1991) Omega-3 and omega-6 PUFA’s have different effects on the phospholipid fatty acid composition of rat myocardial muscle when added to a saturated fatty acid dietary supplement. Nutr Res 11:1013–1024

    Article  CAS  Google Scholar 

  33. Lefkowitz W, Lim SY, Lin Y, Salem N Jr (2005) Where does the developing brain obtain its docosahexaenoic acid? Relative contributions of dietary alpha-linolenic acid, docosahexaenoic acid, and body stores in the developing rat. Pediatr Res 57:157–165

    Article  PubMed  CAS  Google Scholar 

  34. Motouri M, Matsuyama H, Yamamura J, Tanaka M, Aoe S, Iwanaga T, Kawakami H (2003) Milk sphingomyelin accelerates enzymatic and morphological maturation of the intestine in artificially reared rats. J Pediatr Gastroenterol Nutr 36:241–247

    Article  PubMed  CAS  Google Scholar 

  35. Wainwright PE, Huang YS, Coscina DV, Levesque S, McCutcheon D (1994) Brain and behavioral effects of dietary n-3 deficiency in mice: a three generational study. Dev Psychobiol 27:467–487

    Article  PubMed  CAS  Google Scholar 

  36. Carrie I, Clement M, de Javel D, Frances H, Bourre JM (2000) Specific phospholipid fatty acid composition of brain regions in mice. Effects of n-3 polyunsaturated fatty acid deficiency and phospholipid supplementation. J Lipid Res 41:465–472

    PubMed  CAS  Google Scholar 

  37. Wainwright PE, Huang YS, Bulman-Fleming B, Levesque S, McCutcheon D (1994) The effects of dietary fatty acid composition combined with environmental enrichment on brain and behavior in mice. Behav Brain Res 60:125–136

    Article  PubMed  CAS  Google Scholar 

  38. Fedorova I, Hussein N, Di Martino C, Moriguchi T, Hoshiba J, Majchrzak S, Salem N Jr (2007) An n-3 fatty acid deficient diet affects mouse spatial learning in the Barnes circular maze. Prostaglandins Leukot Essent Fatty Acids 77:269–277

    Article  PubMed  CAS  Google Scholar 

  39. Kang JX (2007) Fat-1 transgenic mice: a new model for omega-3 research. Prostaglandins, Leukot Essent Fatty Acids 77:263–267

    Article  CAS  Google Scholar 

  40. Flowers MT, Ntambi JM (2008) Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Curr Opin Lipidol 19:248–256

    Article  PubMed  CAS  Google Scholar 

  41. Stoffel W, Holz B, Jenke B, Binczek E, Gunter RH, Kiss C, Karakesisoglou I, Thevis M, Weber AA, Arnhold S, Addicks K (2008) Delta 6-desaturase (FADS2) deficiency unveils the role of omega 3- and omega 6-polyunsaturated fatty acids. EMBO J 27:2281–2292

    Article  PubMed  CAS  Google Scholar 

  42. Flowers JB, Rabaglia ME, Schueler KL, Flowers MT, Lan H, Keller MP, Ntambi JM, Attie AD (2007) Loss of stearoyl-CoA desaturase-1 improves insulin sensitivity in lean mice but worsens diabetes in leptin-deficient obese mice. Diabetes 56:1228–1239

    Article  PubMed  CAS  Google Scholar 

  43. Lim SY, Moriguchi T, Lefkowitz B, Loewke J, Majchrzak S, Hoshiba J, Salem N Jr (2003) Artificial feeding of an n-3 essential fatty acid-deficient diet leads to a loss of brain function in the first generation. In: Huang YS, Lin SJ, Huang PC (eds) Essential fatty acids and eicosanoids. AOCS Press, Champaign

  44. Weisinger HS, Armitage JA, Jeffrey BG, Mitchell DC, Moriguchi T, Sinclair AJ, Weisinger RS, Salem N Jr (2002) Retinal sensitivity loss in third-generation n-3 PUFA-deficient rats. Lipids 37:759–765

    Article  PubMed  CAS  Google Scholar 

  45. Moriguchi T, Salem N Jr (2003) Recovery of brain docosahexaenoate leads to recovery of spatial task performance. J Neurochem 87:297–309

    Article  PubMed  CAS  Google Scholar 

  46. Salem N Jr, Loewke J, Catalan JN, Majchrzak S, Moriguchi T (2005) Incomplete replacement of docosahexaenoic acid by n-6 docosapentaenoic acid in the rat retina after an n-3 fatty acid deficient diet. Exp Eye Res 81:655–663

    Article  PubMed  CAS  Google Scholar 

  47. Wessels A, Sedmera D (2003) Developmental anatomy of the heart: a tale of mice and man. Physiol Genomics 15:165–176

    PubMed  Google Scholar 

  48. Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA (2007) Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol 293:H1883–H1891

    Article  PubMed  CAS  Google Scholar 

  49. Infante JP, Kirwan RC, Brenna JT (2001) High levels of docosahexaenoic acid (22:6n-3)-containing phospholipids in high-frequency contraction muscles of hummingbirds and rattlesnakes. Comp Biochem Physiol B Biochem Mol Biol 130:291–298

    Article  PubMed  CAS  Google Scholar 

  50. Mozaffarian D, Ascherio A, Hu FB, Stampfer MJ, Willett WC, Siscovick DS, Rimm EB (2005) Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men. Circulation 111:157–164

    Article  PubMed  CAS  Google Scholar 

  51. Siscovick DS, Lemaitre RN, Mozaffarian D (2003) The fish story: a diet-heart hypothesis with clinical implications: n-3 polyunsaturated fatty acids, myocardial vulnerability, and sudden death. Circulation 107:2632–2634

    Article  PubMed  Google Scholar 

  52. Courtois P, Louchami K, Portois L, Chardigny JM, Sener A, Carpentier YS, Malaisse WJ (2005) Effects of a medium-chain triglyceride:fish oil emulsion administered intravenously to omega 3 fatty acid-depleted rats on cationic fluxes in aortic rings. Int J Mol Med 16:1089–1093

    PubMed  CAS  Google Scholar 

  53. Leeson CP, Mann A, Kattenhorn M, Deanfield JE, Lucas A, Muller DP (2002) Relationship between circulating n-3 fatty acid concentrations and endothelial function in early adulthood. Eur Heart J 23:216–222

    Article  PubMed  CAS  Google Scholar 

  54. Metcalf RG, James MJ, Gibson RA, Edwards JR, Stubberfield J, Stuklis R, Roberts-Thomson K, Young GD, Cleland LG (2007) Effects of fish-oil supplementation on myocardial fatty acids in humans. Am J Clin Nutr 85:1222–1228

    PubMed  CAS  Google Scholar 

  55. Berger A, Gershwin ME, German JB (1992) Effects of various dietary fats on cardiolipin acyl composition during ontogeny of mice. Lipids 27:605–612

    Article  PubMed  CAS  Google Scholar 

  56. Watkins SM, Lin TY, Davis RM, Ching JR, DePeters EJ, Halpern GM, Walzem RL, German JB (2001) Unique phospholipid metabolism in mouse heart in response to dietary docosahexaenoic or alpha-linolenic acids. Lipids 36:247–254

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman Salem Jr..

About this article

Cite this article

Hussein, N., Fedorova, I., Moriguchi, T. et al. Artificial Rearing of Infant Mice Leads to n-3 Fatty Acid Deficiency in Cardiac, Neural and Peripheral Tissues. Lipids 44, 685–702 (2009). https://doi.org/10.1007/s11745-009-3318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-009-3318-2

Keywords

Navigation