Skip to main content
Log in

Determination of Triacylglycerols in Butterfat by Normal-Phase HPLC and Electrospray–Tandem Mass Spectrometry

  • Original Article
  • Published:
Lipids

Abstract

Here, we report the identification and quantification of the molecular species of long-, medium-, and short-chain triacylglycerols (TAG) in butterfat (BF), including TAG with an odd number of acyl carbons (ACN) and TAG with unidentified molecular species. In the present study, in addition to auto-MS2, a large number of methods, each recording MS2 for 1–4 ions, were used for identification of TAG species. For the quantification of long-chain, odd ACN TAG, and TAG with unidentified molecular species, molar correction factors (MCF) were calculated from the uncorrected mol% (area mol%) of each ACN:DB (number of double bonds) class in randomized butterfat (RBF), and the respective mol% in the calculated random composition of RBF. The butyrate, caproate, and medium-chain (C8, C10) TAG were quantified using regio- or acyl-chain-specific MCF calculated from their area mol% in RBF and mol% in the calculated random composition. These methods enabled us to identify ca. 450 TAG species in 184 quantified peaks of 88 ACN:DB classes. The proportions of saturated, monoene, diene, triene, tetraene, pentaene, and hexaene TAG were 40.0, 38.4, 16.2, 4.5, 0.6, 0.1, and 0.03 mol%, respectively. The proportions of TAG with not identified molecular species and odd ACN TAG were 11.8 and 5.7 mol%, respectively. The most abundant short-chain TAG species were butyroyldipalmitoylglycerol + butyroylmyristoylstearoylglycerol (5.25 mol%) and butyroylpalmitoyloleoylglycerol (4.08 mol%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACN:

The number of acyl group carbons

ACN:DB:

The number of acyl group carbons:the number of double bonds

APCI:

Atmospheric pressure chemical ionization

BF:

Butterfat

CI:

Chemical ionization

DAG:

Diacylglycerol(s)

EI–MS:

Electron ionization mass spectrometry

ESI–MS:

Electrospray mass spectrometry

ESI–MS2 :

Electrospray tandem mass spectrometry

GC:

Gas–liquid chromatography

HPLC:

High performance liquid chromatography

ISTD:

Internal standard

LC–MS:

Liquid chromatography–mass spectrometry

MCF:

Molar correction factor

MF:

Milk fat

NP:

Normal-phase

RBF:

Randomized butterfat

RP:

Reversed-phase

RRT:

Relative retention time

SFC:

Supercritical fluid chromatography

sn :

Stereospecific numbering

SPE:

Solid phase extraction

TAG:

Triacylglycerol(s)

TLC:

Thin layer chromatography

References

  1. Jensen RG (2002) The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci 85:295–350

    Article  PubMed  CAS  Google Scholar 

  2. Breckenridge WC, Kuksis A (1968) Specific distribution of short-chain fatty acids in molecular distillates of bovine milk fat. J Lipid Res 9:388–393

    PubMed  CAS  Google Scholar 

  3. Marai L, Breckenridge WC, Kuksis A (1969) Specific distribution of fatty acids in the milk fat triglycerides of goat and sheep. Lipids 4:562–570

    Article  PubMed  CAS  Google Scholar 

  4. Pitas RE, Sampugna J, Jensen RG (1967) Triglyceride structure of cows’ milk fat. Preliminary observations on the fatty acid compositions of positions 1, 2, and 3. J Dairy Sci 50:1332–1336

    CAS  Google Scholar 

  5. Myher JJ, Kuksis A, Marai L, Sandra P (1988) Identification of the more complex triacylglycerols in bovine milk fat by gas chromatography–mass spectrometry using polar capillary columns. J Chromatogr 452:93–118

    Article  PubMed  CAS  Google Scholar 

  6. Kalo P, Kemppinen A (1993) Mass spectrometric identification of triacylglycerols of enzymatically modified butterfat separated on a polarizable phenylmethylsilicone column. J Am Oil Chem Soc 70:1209–1217

    Article  CAS  Google Scholar 

  7. Kemppinen A, Kalo P (1993) Fractionation of the triacylglycerols of lipase-modified butter oil. J Am Oil Chem Soc 70:1203–1207

    Article  CAS  Google Scholar 

  8. Kemppinen A, Kalo P (1998) Analysis of sn-1(3)- and sn-2-short-chain acyl isomers of triacylglycerols in butteroil by gas–liquid chromatography. J Am Oil Chem Soc 75:91–100

    Article  CAS  Google Scholar 

  9. Kemppinen A, Kalo P (2006) Quantification of triacylglycerols in butterfat by gas chromatography–electron impact mass spectrometry using molar correction factors for [M − RCOO]+ ions. J Chromatogr A 1134:260–283

    Article  PubMed  CAS  Google Scholar 

  10. Kallio H, Laakso P, Huopalahti R, Linko RR (1989) Analysis of butter fat triacylglycerols by supercritical fluid chromatography/electron impact mass spectrometry. Anal Chem 60:698–700

    Article  Google Scholar 

  11. Laakso P, Manninen P (1997) Identification of milk fat triacylglycerols by capillary supercritical fluid chromatography–atmospheric pressure chemical ionization mass spectrometry. Lipids 32:1285–1295

    Article  PubMed  CAS  Google Scholar 

  12. Kuksis A, Marai L, Myher JJ (1991) Reversed-phase liquid chromatography–mass spectrometry of complex mixtures of natural triacylglycerols with chloride–attachment negative chemical ionization. J Chromatogr 588:73–87

    Article  CAS  Google Scholar 

  13. Maniongui C, Gresti C, Bugaut M, Gauthier S, Bezard J (1991) Determination of bovine butterfat triacylglycerols by reversed-phase liquid chromatography and gas chromatography. J Chromatogr 543:81–103

    Article  PubMed  CAS  Google Scholar 

  14. Gresti J, Bugaut M, Maniongui C, Bezard J (1993) Composition of molecular species of triacylglycerols in bovine milk fat. J Dairy Sci 76:1850–1869

    Article  PubMed  CAS  Google Scholar 

  15. Myher JJ, Kuksis A, Marai L (1993) Identification of the less common isologous short-chain triacylglycerols in the most volatile 2.5% molecular distillate of butter oil. J Am Oil Chem Soc 70:1183–1191

    Article  CAS  Google Scholar 

  16. Marai L, Kuksis A, Myher JJ (1994) Reversed-phase liquid chromatography–mass spectrometry of the uncommon triacylglycerol structures generated by randomization of butteroil. J Chromatogr 672:87–99

    Article  CAS  Google Scholar 

  17. Spanos GA, Schwartz RB, van Breemen RB, Huang CH (1995) High-performance liquid chromatography with light-scattering detection and desorption chemical–ionization tandem mass spectrometry of milk fat triacylglycerols. Lipids 30:85–90

    Article  PubMed  CAS  Google Scholar 

  18. Mottram HR, Evershed RP (2001) Elucidation of the composition of bovine milk fat triacylglycerols using high-performance liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr 926:239–253

    Article  CAS  Google Scholar 

  19. Kalo P, Kemppinen A, Ollilainen V, Kuksis A (2004) Regiospecific determination of short-chain triacylglycerols in butterfat by normal-phase HPLC with on-line electrospray–tandem mass spectrometry. Lipids 39:915–928

    Article  PubMed  CAS  Google Scholar 

  20. Plattner RD, Payne-Wahl K (1979) Separation of triglycerides by chain length and degree of unsaturation on silica HPLC columns. Lipids 14:152–153

    Article  CAS  Google Scholar 

  21. Rhodes SH, Netting AG (1988) Normal-phase high-performance liquid chromatography of triacylglycerols. J Chromatogr 448:135–143

    Article  PubMed  CAS  Google Scholar 

  22. Lin JT (2007) HPLC separation of acyl lipid classes. J Liq Chrom Relat Technol 30:2005–2020

    Article  CAS  Google Scholar 

  23. Mangos TJ, Jones KC, Foglia TA (1999) Normal-phase high performance liquid chromatographic separation and characterization of short- and long-chain triacylglycerols. Chromatographia 49:363–368

    Article  CAS  Google Scholar 

  24. Kalo P, Kemppinen A, Ollilainen V, Kuksis A (2003) Analysis of regioisomers of short-chain triacylglycerols by normal-phase liquid chromatography–electrospray tandem mass spectrometry. Int J Mass Spectrom 229:167–180

    Article  CAS  Google Scholar 

  25. Kalo P, Ollilainen V, Rocha JM, Malcata FX (2006) Identification of simple lipids by normal-phase liquid chromatography–positive electrospray tandem mass spectrometry, and application of developed methods in comprehensive analysis of low erucic acid rapeseed oil lipids. Int J Mass Spectrom 254:106–121

    Article  CAS  Google Scholar 

  26. Duffin KL, Henion JD, Shieh JJ (1991) Electrospray and tandem mass spectrometric characterization of acylglycerol mixtures that are dissolved in nonpolar solvents. Anal Chem 63:1781–1788

    Article  PubMed  CAS  Google Scholar 

  27. Cheng C, Gross ML, Pittenauer E (1998) Complete structural elucidation of triacylglycerols by tandem sector mass spectrometry. Anal Chem 70:4417–4426

    Article  PubMed  CAS  Google Scholar 

  28. Marzilli LA, Fay LB, Dionisi F, Vouros P (2003) Structural characterization of triacylglycerols using electrospray ionization–MSn ion-trap MS. J Am Oil Chem Soc 80:195–202

    Article  CAS  Google Scholar 

  29. McAnoy AM, Wu CC, Murphy RC (2005) Direct qualitative analysis of triacylglycerols by electrospray mass spectrometry using a linear ion trap. J Am Soc Mass Spectrom 16:1498–1509

    Article  PubMed  CAS  Google Scholar 

  30. Hites RA (1970) Quantitative analysis of triglyceride mixtures by mass spectrometry. Anal Chem 42:1736–1740

    Article  CAS  Google Scholar 

  31. Lauer WM, Aasen AJ, Graff G, Holman RT (1970) Mass spectrometry of triglycerides: I. Structural effects. Lipids 5:861–868

    Article  PubMed  CAS  Google Scholar 

  32. Schulte E, Höhn M, Rapp U (1981) Mass spectrometric determination of triglyceride patterns of fats by the direct chemical ionization technique (DCI). Fresenius Z Anal Chem 307:115–119

    Article  CAS  Google Scholar 

  33. Myher JJ, Kuksis A, Marai L, Manganaro F (1984) Quantitation of natural triacylglycerols by reversed-phase liquid chromatography with direct liquid inlet mass spectrometry. J Chromatogr 283:289–301

    Article  PubMed  CAS  Google Scholar 

  34. Kallio H, Currie G (1993) Analysis of low erucic acid turnip rapeseed oil (Brassica campestris) by negative ion chemical ionization tandem mass spectrometry. A method giving information on the fatty acid composition in positions sn-2 and sn-1/3 of triacylglycerols. Lipids 28:207–215

    Article  CAS  Google Scholar 

  35. Byrdwell WC, Emken EA, Neff WE, Adlof RO (1996) Quantitative analysis of triglycerides using atmospheric pressure chemical ionization–mass spectrometry. Lipids 31:919–935

    Article  PubMed  CAS  Google Scholar 

  36. Byrdwell WC, Neff WE (1996) Analysis of genetically modified Canola varieties by atmospheric pressure chemical ionization mass spectrometric and flame ionization detection. J Liq Chrom Relat Technol 19:2203–2225

    Article  CAS  Google Scholar 

  37. Parodi PW (1975) Detection of acetodiacylglycerols in milk fat lipids by thin-layer chromatography. J Chromatogr 111(1975):223–226

    Article  PubMed  CAS  Google Scholar 

  38. Itabashi Y, Myher JJ, Kuksis A (1993) Determination of positional distribution of short-chain fatty acids in bovine milk fat on chiral columns. J Am Oil Chem Soc 70:1177–1181

    Article  CAS  Google Scholar 

  39. Limb JK, Kim YH, Han SY, Jhon GJ (1999) Isolation and characterization of monoacetyldiglycerides from bovine udder. J Lipid Res 40:2169–2176

    PubMed  CAS  Google Scholar 

  40. Hendrikse PW, Harwood JL (1986) Analytical methods. In: Gunstone FD, Harwood JL, Padley FB (eds) The lipid handbook. Chapman and Hall, London

    Google Scholar 

  41. Han X, Gross RW (2001) Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 295:88–100

    Article  PubMed  CAS  Google Scholar 

  42. Christie WW (1985) Rapid separation and quantification of lipid classes by high performance liquid chromatography and mass (light scattering) detection. J Lipid Res 26:507–512

    PubMed  CAS  Google Scholar 

  43. Harris DC (1987) Quantitative chemical analysis. W. H. Freeman and Company, New York

    Google Scholar 

Download references

Acknowledgments

Financial support from the Jenny and Antti Wihuri Foundation and Finnish Society of Dairy Science is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kalo.

About this article

Cite this article

Kalo, P., Kemppinen, A. & Ollilainen, V. Determination of Triacylglycerols in Butterfat by Normal-Phase HPLC and Electrospray–Tandem Mass Spectrometry. Lipids 44, 169–195 (2009). https://doi.org/10.1007/s11745-008-3247-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3247-5

Keywords

Navigation