Skip to main content
Log in

Fatty Acids in Liver, Muscle and Gonad of three Tropical Rays including Non-Methylene-Interrupted Dienoic Fatty Acids

  • Original Article
  • Published:
Lipids

Abstract

Scientific investigation of lipids in Elasmobranchs has been conducted mainly on shark species. Because rays seem to be neglected, this study was performed to examine the complete fatty acid (FA) composition with a particular interest for long-chain polyunsaturated FA (PUFA) content in different tissues of three ray species including parts usually discarded. The total FA and PUFA profiles of total lipids were determined in muscle, liver, and gonad of Rhinobatos cemiculus, Rhinoptera marginata, and Dasyatis marmorata, the most often caught ray species from the East Tropical Atlantic Ocean. Fifty FA were characterized as methyl esters and N-acyl pyrrolidides by gas chromatography/mass spectrometry, showing significant levels of 20:5n-3 (EPA) (up to 5.3%) and 22:5n-3 (DPA) (up to 7.3%), high levels of 20:4n-6 arachidonic (ARA) (4.8–8.6% of total FA) and 22:6n-3 (DHA) (up to 20.0%). The results show that muscle, liver and gonad of rays can provide high amounts of essential PUFA, specially DHA, for direct human nutrition or the food processing industry. High proportions of DHA were particularly found in all samples of R. cemiculus (11.6–20.0%), and in muscle and liver of D. marmorata (11.1–16.1%). Regarding the high amounts of (n-3) PUFA, this study shows that these rays deserve a better up-grading, including the normally discarded parts, and describes the occurrence of unusual NMID FA in all tissues studied. Five non-methylene-interrupted dienoic fatty acids (NMID FA) (0–3.4%) were reported, including previously known isomers, namely 20:2 Δ7,13, 20:2 Δ7,15, 22:2 Δ7,13, 22:2 Δ7,15, and new 22:2 Δ6,14. These acids are quite unusual in fish and unprecedented in rays. The 22:2 Δ6,14 acid occurred in gonads of male specimens of R. cemiculus at 2.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

amu:

Atomic mass unit

ARA:

Arachidonic acid

DHA:

Docosahexaenoic acid (22:6n-3)

DPA:

22:5n-3

DUFA:

Diunsaturated FA

EPA:

Eicosapentaenoic acid (20:5n-3)

FA:

Fatty acid

FAME:

Fatty acid methyl ester

GC/MS:

Gas chromatography–mass spectrometry

MUFA:

Monounsaturated FA

NMID FA:

Non-methylene-interrupted dienoic FA

PUFA:

Polyunsaturated FA

SFA:

Saturated FA

TLC:

Thin layer chromatography

References

  1. Fisher W, Bianchi G, and Scott WB (1981) FAO species identification sheets for fishery purposes: Eastern Central Atlantic fishing area. vol 1–7. Department of Fisheries and Oceans, Ottawa, Canada, p 34, 47

  2. El Kebir MV, Mirallès J, Arabi S, Siau Y (1995) Exploitation of guitarfishes in Mauritania, E C Fisheries Cooperation. Fish Bull 8:15–17

    Google Scholar 

  3. Arts MT, Ackman RG, Holub BJ (2001) “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can J Fish Aquat Sci 58:122–137

    Article  CAS  Google Scholar 

  4. Connor WE (2000) Importance of n-3 fatty acids in health and disease. Am J Clin Nutr 71(Suppl. 1):171S–175S

    PubMed  CAS  Google Scholar 

  5. von Schacky C, Angerer P, Kothny W, Theisen K, Mudra H (1999) The effect of dietary omega-3 fatty acids on coronary atherosclerosis. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 130:554–562

    Google Scholar 

  6. Lapillonne A, Carlson SE (2001) Polyunsaturated fatty acids and infant growth. Lipids 36:901–911

    Article  PubMed  CAS  Google Scholar 

  7. Salem Jr N, Litman B, Kim H-Y, Gawrisch K (2001) Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 36:945–959

    Article  PubMed  CAS  Google Scholar 

  8. Diggle CP (2002) In vitro studies on the relationship between polyunsaturated fatty acids and cancer: tumour or tissue specific effects? Prog Lipid Res 41:240–253

    Article  PubMed  CAS  Google Scholar 

  9. Li D, Bode O, Drummond H, Sinclair AJ (2003) Omega-3 (n-3) fatty acids. In: Gunstone FD (ed) Lipids for functional foods and nutraceuticals. vol 13. The Oily Press, UK, pp 225–262

  10. Calder PC, Burdge GC (2004) Fatty acids. In: Nicolaou A, Kokotos G (eds) Bioactive lipids. vol 17. The Oily Press, UK, pp 1–36

  11. Stillwell W, Wassall SR (2003) Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids 126:1–27

    Article  PubMed  CAS  Google Scholar 

  12. Bergé JP, Barnathan G (2005) Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects, Adv Biochem Eng/Biotechnol 96. Springer, Heidelberg, pp 49–126

  13. Maigret J, Ly B (1986) Les Poissons de Mer de la Mauritanie. Centre National de Recherches Océanographiques et des Pêches (CNROP). Ed. Compiègne, France, 213 pp

  14. Njinkoué JM, Barnathan G, Mirallès J, Gaydou EM, Samb A (2002) Lipids and fatty acids in muscle, liver and skin of three edible fish from the Senegalese coast: Sardinella maderensis, Sardinella aurita and Cephalopholis taeniops, Comp. Biochem Physiol 131B:395–402

    Google Scholar 

  15. Compagno LJV (1977) Phyletic relationships of living sharks and rays. Amer Zool 17:303–322

    Google Scholar 

  16. Ould El Kebir MV, Barnathan G, Siau Y, Mirallès J, Gaydou EM (2003) Fatty acid distribution in muscle, liver and gonads of rays (Dasyatis marmorata, Rhinobatos cemiculus and Rhinoptera marginata) from the East tropical Atlantic Ocean. J Agric Food Chem 51:1942–1947

    Article  PubMed  CAS  Google Scholar 

  17. Wetherbee BM, Nichols PD (2000) Lipid composition of the liver oil of deep-sea sharks from the Chatham Rice, New Zealand. Comp Biochem Physiol 125B:511–521

    CAS  Google Scholar 

  18. Navarro-García G, Pacheco-Aguilar R, Vallejo-Cordova B, Ramirez-Suarez JC, Bolaños A (2000) Lipid composition of the liver oil of shark species from the Caribbean and Gulf of California waters. J Food Comp Anal 13:791–798

    Article  CAS  Google Scholar 

  19. Jayasinghe C, Gotoh N, Wada S (2003) Variation in lipid classes and fatty acid composition of salmon shark (Lamna ditropis) liver with season and gender. Comp Biochem Physiol 134B:287–295

    CAS  Google Scholar 

  20. Navarro-García G, Pacheco-Aguilar R, Bringas-Alvarado L, Ortega-García J (2004) Characterization of the lipid composition and natural antioxidants in the liver oil of Dasyatis brevis and Gymnura marmorata rays. Food Chem 87:89–96

    Article  CAS  Google Scholar 

  21. Pal D, Banerjee D, Patra TK, Patra A, Ghosh A (1998) Liver lipids and fatty acids of the sting ray Dasyatis bleekeri (Blyth). J Am Oil Chem Soc 75:1373–1378

    CAS  Google Scholar 

  22. Navarro-García G, Bringas-Alvarado L, Pacheco-Aguilar R, Ortega-García J (2004) Oxidative resistance, carotenes, tocopherols and lipid profile of liver oil of the ray Rhinoptera steindechneri. J Food Comp Anal 17:699–706

    Article  CAS  Google Scholar 

  23. Fernàndez-Reiriz MJ, Pastoriza L, Sampedro G (1992) Lipid changes in muscle tissue of Ray (Raja clavata) during processing and frozen storage. J Agric Food Chem 40:484–488

    Article  Google Scholar 

  24. Fernàndez-Reiriz MJ, Pastoriza L, Sampedro G, Herrera JJ (1994) Effects of processing and ice storage on lipid classes and fatty acids of ray muscle (Raja clavata). Food Chem 51:95–98

    Article  Google Scholar 

  25. Smith MM, Heemstra PC (1986) Smith’s sea fishes. Springer, Berlin, pp 599

  26. Talent LG (1985) The occurrence, seasonal distribution, and reproductive condition of elasmobranch fishes in Elkhorn Slough, California. Calif Fish Game 71:210–219

    Google Scholar 

  27. Blaylock RA (1993) Distribution and abundance of the cownose ray, Rhinoptera bonasus, in lower Chesapeake Bay. Estuaries 16:255–263

    Article  Google Scholar 

  28. Bligh EG, Dyer W (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  29. Wolff JP (1968) Manuel d’Analyse des Corps Gras. Azoulay, Paris, 524

    Google Scholar 

  30. Andersson BA (1978) Mass spectrometry of fatty acid pyrrolidides, Progr. Chem Fats Other Lipids 16:279–308

    Article  CAS  Google Scholar 

  31. Christie WW, Brechany EY, Stefanov K, Popov S (1992) The fatty acids of the sponge Dysidea fragilis from the Black Sea. Lipids 27:640–644

    Article  CAS  Google Scholar 

  32. Nechev J, Christie WW, Robaina R, de Diego F, Popov S, Stefanov K (2004) Chemical composition of the sponge Hymeniacidon sanguinea from the Canary Islands. Comp Biochem Physiol 137A:365–374

    CAS  Google Scholar 

  33. Bénistant C, Achard F, Ben Slama S, Lagarde M (1996) Docosapentaenoic acid (22:5n-3): metabolism and effect on prostacyclin production in endothelial cells. Prost Leukotr Essent Fatty Acids 55:287–292

    Article  Google Scholar 

  34. Kates M (1964) Bacterial lipids. Adv Lipid Res 2:17–90

    PubMed  CAS  Google Scholar 

  35. Kaneda T (1977) Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol Rev 41:391–418

    PubMed  CAS  Google Scholar 

  36. Bobbie RJ, White D (1980) Characterization of benthic microbial community structure by high-resolution gas chromatography of fatty acid methyl esters. Appl Environ Microbiol 39:1212–1222

    PubMed  CAS  Google Scholar 

  37. Djerassi C, Lam WK (1991) Sponge phospholipids. Acc Chem Res 24:69–75

    Article  CAS  Google Scholar 

  38. Carballeira NM, Pagan M, Rodriguez AD (1998). Identification and total synthesis of novel fatty acids from the Caribbean sponge Calyx podatypa. J Nat Prod 61:1049–1052

    Article  PubMed  CAS  Google Scholar 

  39. Barnathan G, Kornprobst JM, Doumenq P, Mirallès J (1996) New unsaturated long-chain fatty acids in the phospholipids from the Axinellidae sponges Trikentrion loeve and Pseudaxinella cf. lunaecharta. Lipids 31:193–200

    Article  PubMed  CAS  Google Scholar 

  40. Barnathan G, Genin E, Nongonierma R, Al-Lihaibi S, Velosaotsy NE, Kornprobst JM (2003) Phospholipid fatty acids and sterols of two Cinachyrella from Saudi Arabia Red Sea. Comparative study with Cinachyrella sponges species from other origins. Comp Biochem Physiol 135B:297–308

    CAS  Google Scholar 

  41. Ackman RG, Hooper SN (1973) Non-methylene-interrupted fatty acids in lipids of shallow-water marine invertebrates: a comparison of two molluscs (Littorina littorea and Lunatia triseriata) with the sand shrimp (Crangon septemspinosus). Comp Biochem Physiol 46B:153–165

    Google Scholar 

  42. Ackman RG (1990) Fatty acids. In: Ackman RG (ed) Marine biogenic lipids, fats and oils. vol 1. CRC Press Inc., Boca Raton, Florida, pp 103–137

  43. Ackman RG, Lamothe F (1990) Marine mammals. In: Ackman RG (ed) Marine biogenic lipids, fats and oils, vol 2. CRC Press Inc., Boca Raton, Florida, pp 179–381

  44. Klingensmith JS (1982) Distribution of methylene and nonmethylene-interrupted dienoic fatty acids in polar lipids and triacylglycerols of selected tissues of the Hardshell Clam (Mercenaria mercenaria). Lipids 17:976–981

    Article  CAS  Google Scholar 

  45. Fang J, Comet PA, Brooks JM, Wade TL (1993) Nonmethylene-interrupted fatty acids of hydrocarbon seep mussels: occurrence and significance. Comp Biochem Physiol 104B:287–291

    CAS  Google Scholar 

  46. Pazos AJ, Sánchez JL, Román G, Luz Pérez-Parallé M, Abad M (2003) Seasonal changes in lipid classes and fatty acid composition in the digestive gland of Pecten maximus. Comp Biochem Physiol 134B:367–380

    CAS  Google Scholar 

  47. Kraffe E, Soudant P, Marty Y (2004) Fatty acid composition of serine, ethanolamine and choline plasmalogens in some marine bivalves. Lipids 39:56–66

    Article  Google Scholar 

  48. Freites L, Fernández-Reiriz MJ, Labarta U (2002) Fatty acid profiles of Mytilus galloprovincialis (Lmk) mussel of subtidal and rocky shore origin. Comp Biochem Physiol 132B:453–461

    CAS  Google Scholar 

  49. Abad M, Ruiz C, Martinez D, Mosquera G, Sánchez JL (1995) Seasonal variations of lipid classes and fatty acids in flat oyster, Ostrea edulis, from San Cibran (Galicia, Spain). Comp Biochem Physiol 110C:109–118

    CAS  Google Scholar 

  50. Zhukova NV, Svetashev VI (1986) Non-methylene-interrupted dienoic fatty acids in molluscs from the sea of Japan. Comp Biochem Physiol 83B:643–646

    CAS  Google Scholar 

  51. Zhukova NV (1986) Biosynthesis of non-methylene-interrupted dienoic fatty acids from [14C] acetate in molluscs. Biochim Biophys Acta 878:131–133

    CAS  Google Scholar 

  52. Zhukova NV (1991) The pathway of the biosynthesis of non-methylene-interrupted dienoic fatty acids in molluscs. Comp Biochem Physiol 100B:801–804

    CAS  Google Scholar 

  53. Takagi T, Kaneniwa M, Itabashi Y, Ackman RG (1986) Fatty acids in Echinoidea: unusual cis-5-olefinic acids as distinctive lipid components in sea urchins. Lipids 21:558–565

    Article  CAS  Google Scholar 

  54. Howell KL, Pond DW, Billett DSM, Tyler PA (2003) Feeding ecology of deep-sea seastars (Echinodermata: Asteroidea): a fatty-acid biomarker approach. Mar Ecol Prog Ser 255:193–206

    CAS  Google Scholar 

  55. Fullarton JG, Dando PR, Sargent JR, Southward AJ, Southward EC (1995) Fatty acids of hydrothermal vent Ridgeia piscesae and inshore bivalves containing symbiotic bacteria. J Mar Biol Ass UK 75:455–468

    Article  CAS  Google Scholar 

  56. Phleger CF, Nelson MN, Groce AK, Cary SC, Coyne KJ, Nichols PD (2005) Lipid composition of deep-sea hydrothermal vent tubeworm Riftia pachyptila, crabs Munidopsis subsquamosa and Bythograea thermydron, mussels Bathymodiolus sp. and limpets Lepetodrilus spp. Comp Biochem Physiol 141B:196–210

    CAS  Google Scholar 

  57. Rontania JF, Christodouloua S, Koblizek M (2004) GC–MS structural characterization of fatty acids from marine aerobic anoxygenic phototrophic bacteria. Lipids 40:97–108

    Article  Google Scholar 

  58. Capapé C, Zaouli J (1979) Diet of two selachians common to the Gulf of Gabes (Tunisia): Rhinobatos rhinobatos (Linné, 1758) and Rhinobatos cemiculus (Geoffroy Sainte-Hilaire, 1817). Arch Inst Pasteur Tunis 56:285–306

    PubMed  Google Scholar 

  59. Abdel-Aziz SH, Khalil AN, Abdel-Maguid SA (1993) Food and feeding habits of the common guitarfish, Rhinobatos rhinobatos in the Egyptian Mediterranean waters. Indian J Mar Sci 22:287–290

    Google Scholar 

  60. Wilga CD, Motta PJ (1998) Feeding mechanism of the Atlantic guitarfish Rhinobatos lentiginosus: modulation of kinematic and motor activity. J Exp Biol 201:3167–3183

    PubMed  Google Scholar 

  61. Ebert DA, Cowley PD (2003) Diet, feeding behaviour and habitat utilization of the blue stingray Dasyatis chrysonota (Smith, 1828) in Southern African waters. Mar Freshw Res 54:957–965

    Article  Google Scholar 

  62. Whitehead PJP, Bauchot M-L, Hureau J-C, Nielsen J, Tortonese E (1986) Fishes of the North–Eastern Atlantic and the Mediterranean. Copeia 1:266–267

    Google Scholar 

  63. Quéro JC, Hureau J-C, Karrer C, Post A, Saldanha L (1990) Checklist of the fishes of the Eastern tropical Atlantic. Junta Nacional de Investigação Cientifica e Tecnologica, Lisbon, SEI, UNESCO, Paris, Springer 2(2), pp 182–184

  64. Shibuya A, de Souza Rosa R, Soares MC (2005) Note on the diet of the guitarfish Rhinobatos percellens (Walbaum (Elasmobranchii, Rhinobatidae) from the coast of Paraiba, Brazil. Acta Biologica Leopoldensia 27:63–64

    Google Scholar 

  65. Capapé C, Zaouali J (1992) The diet of the marbled stingray Dasyatis marmorata (Pisces, Dasyatidae) from Tunisian waters (Fr.). Vie Milieu Paris 42:269–276

    Google Scholar 

Download references

Acknowledgments

Thanks are due to A. Ould Haouba (Nouakchott University, Mauritania) for administrative facilities and Z. Mint Sid’Oumou (Biology Department, Nouakchott University, Mauritania) for the collection and species identification, also to G. Nourrisson, Laboratory of Organic Synthesis, UMR 6513 CNRS, University of Nantes, France, for GC-MS experiments. Financial support by the French Government (Grant for MVEK from the Cooperation Ministry) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Barnathan.

About this article

Cite this article

Kebir, M.V.O.E., Barnathan, G., Gaydou, E.M. et al. Fatty Acids in Liver, Muscle and Gonad of three Tropical Rays including Non-Methylene-Interrupted Dienoic Fatty Acids. Lipids 42, 525–535 (2007). https://doi.org/10.1007/s11745-007-3040-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-007-3040-x

Keywords

Navigation