Skip to main content
Log in

Conjugated linoleic acid and chromium lower body weight and visceral fat mass in high-fat-diet-fed mice

  • Articles
  • Published:
Lipids

Abstract

More than half of the U.S. population has a body mass index of 25 kg/m2 or more, which classifies them as overweight or obese. Obesity is often associated with comorbidities such as diabetes, cardiovascular diseases, and cancer. CLA and chromium have emerged as major dietary supplements that reduce body weight and fat mass, and increase basal metabolic rate in animal models. However, studies show that CLA induces insulin resistance in mice and in humans, whereas Cr improves insulin sensitivity. Hence, we designed the present study to examine the combined effect of CLA and Cr on body composition and insulin sensitivity in a Balb/c mice (n=10/group) model of high-fat-diet-induced obesity. CLA alone lowered body weight, total body fat mass, and visceral fat mass, the last of which decreased further with the combination of CLA and Cr. This effect was accompanied by decreased serum leptin levels in CLA-fed and CLA+Cr-fed mice, and by higher energy expenditure (EE) and oxygen consumption (OC) in CLA+Cr-fed mice. Serum levels of glucose, insulin, the pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), as well as insulin resistance index (IRI), decreased with CLA, whereas CLA and Cr in combination had significant effects on insulin and IL-6 concentrations and IRI. In summary, CLA+Cr decreased body weight and fat mass in high-fat-diet-fed mice, which may be associated with decreased leptin levels and higher EE and OC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AKP:

alkaline phosphatase

BFM:

total body fat mass

BLM:

total body lean mass

CO:

corn oil

c9t11:

cis-9, trans-11

DEXA:

dual energy x-ray absorptiometry

EE:

energy expenditure

IL:

interleukin

IR:

insulin resistance

IRI:

insulin resistance index

IRK:

insulin receptor kinase

IRTP:

insulin receptor tyrosine phosphatase

IS:

insulin sensitivity

LA:

linoleic acid

NF-κB:

nuclear factor-kappaB

OC:

oxygen consumption

PPAR-γ:

peroxisome proliferator-activated receptor-γ

SFO:

safflower oil

t10C12:

trans-10, cis-12

TNF:

tumor necrosis factor

UCP2:

uncoupling protein 2

VFM:

visceral fat mass

References

  1. World Health Organization, (1998) Obesity: Preventing and Managing the Global Epidemic, World Health Organization, Geneva.

    Google Scholar 

  2. Swinburn, B.A., Caterson, I., Seidell, J.C., and James, W.P. (2004) Diet Nutrition and the Prevention of Excess Weight Gain and Obesity. Public Health Nutr. 7, 123–146.

    Article  PubMed  CAS  Google Scholar 

  3. Kopelman, P.G. (2000) Obesity as a Medical Problem. Nature 404, 635–643.

    PubMed  CAS  Google Scholar 

  4. Mokdad, A.H., Serdula, M.K., Dietz, W.H., Bowman, B.A., Marks, J.S., and Koplan, J.P. (1999) The Spread, of the Obesity Epidemic in the United States, 1991–1998, JAMA 282, 1519–1522.

    Article  PubMed  CAS  Google Scholar 

  5. Hedley, A.A., Ogden, C.L., Johnson, C.L., Carroll, M.D., Curtin, L.R., and Flegal, K.M. (2004) Prevalence of Overweight and Obesity Among U.S. Children, Adolescents, and Adults, 1999–2002, JAMA 291, 2847–2850.

    Article  PubMed  CAS  Google Scholar 

  6. Buettner, R., Newgard C.B., Rhodes, C.J., and O'Doherty, R.M. (2000) Correction of Diet-Induced Hyperglycemia. Hyperinsulinemia, and Skeletal Muscle Insulin Resistance by Moderate Hyperleptinemia, Am. J. Physiol. Endocrinol. Metab. 278, E563-E569.

    PubMed  CAS  Google Scholar 

  7. Zhou, X., De Schepper, J., De Craemer, D., Delhase, M., Gys, G., Smitz J., and Hooghe-Peters, E.L. (1998) Pituitary Growth Hormone Release and Gene Expression in Cafeteria-Diet-Induced Obese Rats, J. Endocrinol. 159, 165–172.

    Article  PubMed  CAS  Google Scholar 

  8. Chin, S.F., Liu, W., Storkson, J.M., Ha, Y.L., and Pariza, M.W., (1992) Dietary Sources of Conjugated Dienoic Isomers of Linoleic Acid, a Newly Recognized Class of Anticarcinogens, J. Food Comp. Anal. 5, 185–197.

    Article  CAS  Google Scholar 

  9. Lin, H., Boylston, T.D., Chang, M.J., Luedecke, L.O., and Shultz, T.D. (1995) Survey of the Conjugated Linoleic Acid Contents of Dairy Products, J. Dairy Sci. 78 2358–2365.

    Article  PubMed  CAS  Google Scholar 

  10. Belury, M.A. (2002) Inhibition of Carcinogenesis by Conjugated Linoleic Acid: Potential Mechanisms of Action, J. Nutr. 132, 2995–2998.

    PubMed  CAS  Google Scholar 

  11. Belury, M.A. (2002) Dietary Conjugated Linoleic Acid in Health: Physiological Effects and Mechanisms of Action, Annu. Rev. Nutr. 22, 505–531.

    Article  PubMed  CAS  Google Scholar 

  12. House, R.L., Cassady, J.P., Eisen, E.J., McIntosh, M.K., and Odle, J. (2005) Conjugated Linoleic Acid Evokes De-lipidation Through the Regulation of Genes Controlling Lipid Metabolism in Adipose and Liver Tissue, Obes. Rev. 6, 247–258.

    Article  PubMed  CAS  Google Scholar 

  13. Wahle, K.W., Heys, S.D., and Rotondo, D. (2004) Conjugated Linoleic Acids: Are They Beneficial or Detrimental to Health?, Prog. Lipid Res. 43, 553–587.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, Y., and Jones, P.J. (2004) Dietary Conjugated Linoleic Acid and Body Composition, Am. J. Clin. Nutr. 79, 1153S-1158S.

    PubMed  CAS  Google Scholar 

  15. McLeod, R.S., LeBlanc, A.M., Langille, M.A., Mitchell, P.L., and Currie, D.L. (2004) Conjugated Linoleic Acids, Atherosclerosis, and Hepatic Very-Low-Density Lipoprotein Metabolism, Am. J. Clin. Nutr. 79, 1169S-1174S.

    PubMed  CAS  Google Scholar 

  16. Taylor, C.G., and Zahradka, P. (2004) Dietary Conjugated Linoleic Acid and Insulin Sensitivity and Resistance in Rodent Models, Am. J. Clin. Nutr. 79, 1164S-1168S.

    PubMed  CAS  Google Scholar 

  17. O'Shea, M., Bassaganya-Riera, J., and Mohede, I.C. (2004) Immunomodulatory Properties of Conjugated Linoleic Acid, Am. J. Clin. Nutr. 79, 1199S-1206S.

    PubMed  Google Scholar 

  18. Pariza, M.W. (2004) Perspective on the Safety and Effectiveness of Conjugated Linoleic Acid, Am. J. Clin. Nutr. 79, 1132S-1136S.

    PubMed  CAS  Google Scholar 

  19. Gaullier, J.M., Halse, J., Hoye, K., Kristiansen, K., Fagertun, H., Vik, H., and Gudmundsen, O. (2004) Conjugated Linoleic Acid Supplementation for 1 y Reduces Body Fat Mass in Healthy Overweight Humans, Am. J. Clin. Nutr. 79, 1118–1125.

    PubMed  CAS  Google Scholar 

  20. Gaullier, J.M., Halse, J., Hoye, K., Kristiansen, K., Fagertun, H., Vik, H., and Gudmundsen, O. (2005) Supplementation with Conjugated Linoleic Acid for 24 Months Is Well Tolerated by and Reduces Body Fat Mass in Healthy Overweight Humans, J. Nutr. 135, 778–784.

    PubMed  CAS  Google Scholar 

  21. Tsuboyama-Kasaoka, N., Takahashi, M., Tanemura, K. Kim, H.J., Tange, T., Okuyama, H., Kasai, M., Ikemoto, S., and Ezaki, O. (2000) Conjugated Linoleic Acid Supplementation Reduces Adipose Tissue by Apoptosis and Develops Lipodystrophy in Mice, Diabetes 49, 1534–1542.

    PubMed  CAS  Google Scholar 

  22. Roche H.M., Noone, E., Sewter, C., McBennett S., Savage, D., Gibney, M.J., O'Rahilly, S., and Vidal-Puig, A.J. (2002 Isomer-Dependent Metabolic Effects of Conjugated Linoleic Acid: Insights from Molecular Markers Sterol Regulatory Element-Binding Protein-1c and LXRalpha, Diabetes 51, 2037–2044.

    PubMed  CAS  Google Scholar 

  23. Moloney, F., Yeow, T.P., Mullen, A., Nolan, J.J., and Roche, H.M. (2004) Conjugated Linoleic Acid Supplementation. Insulin Sensitivity, and Lipoprotein Metabolism in Patients with Type 2 Diabetes Mellitus, Am. J. Clin. Nutr. 80, 887–895.

    PubMed  CAS  Google Scholar 

  24. Riserus, U., Arner, P., Brismar, K., and Vessby, B. (2002) Tretment with Dietary trans-10, cis-12 Conjugated Linoleic Acid Causes Isomer-Specific Insulin Resistance in Obese Men with the Metabolic Syndrome, Diabetes Care 25, 1516–1521.

    PubMed  CAS  Google Scholar 

  25. Riserus, U., Vessby, B., Arner, P., and Zethelius, B. (2004) Supplementation with trans-10,cis-12-Conjugated Linoleic Acid Induces Hyperproteinsulinaemia in Obese Men: Close Association with Impaired Insulin Sensitivity, Diabetologia 47, 1016–1019.

    Article  PubMed  CAS  Google Scholar 

  26. Chung, S., Brown, J.M., Provo, J.N., Hopkins, R., and McIntosh, M.K. (2005) Conjugated Linoleic Acid Promotes Human Adipocyte Insulin Resistance Through NFkappaB-Dependent Cytokine Production, J. Biol. Chem. 280, 38445–38456.

    Article  PubMed  CAS  Google Scholar 

  27. Anderson, R.A. (1998), Effects of Chromium on Body Composition and Weight Loss, Nutr. Rev. 56, 266–270.

    Article  PubMed  CAS  Google Scholar 

  28. Pittler, M.H., Stevinson, C., and Ernst, E. (2003) Chromium Picolinate for Reducing Body Weight: Meta-analysis of Randomized Trials, Int. J. Obes Relat. Metab. Disord. 27, 522–529.

    Article  PubMed  CAS  Google Scholar 

  29. Wilson, B.E., and Gondy, A. (1995) Effects of Chromium Supplementation on Fasting Insulin Levels and Lipid Parameters in Healthy Non-obese Young Subjects, Diabetes Res. Prac., 28, 179–184.

    Article  CAS  Google Scholar 

  30. Riales, R., and Albrink, M.J. (1981) Effect of Chromium Chloride Supplementation on Glucose Tolerance and Serum Lipids Including HDL of Adult Men, Am. J. Clin. Nutr. 34, 2670–2678.

    PubMed  CAS  Google Scholar 

  31. Lee, N.A., and Reasner, C.A., (1994) Beneficial Effect of Chromium Supplementation on Serum Triglyceride Levels in NIDDM, Diabetes Care 17, 1449–1452.

    PubMed  CAS  Google Scholar 

  32. Abraham, A.S., Brooks, B.A., and Eylath, U. (1992) The Effects of Chromium Supplementation on Serum Glucose and Lipids in Patients with and without Non-Insulin Dependent Diabetes, Metabolism 41, 768–771.

    Article  PubMed  CAS  Google Scholar 

  33. Anderson, R.A. (1999) Chromium and Diabetes, Nutrition 15, 720–722.

    Article  PubMed  CAS  Google Scholar 

  34. Striffler, J.S., Polansky, M.M., and Anderson, R.A. (1998) Dietary Chromium Decreases Insulin Resistance in Rats Fed a High-Fat, Mineral-Imbalanced Diet, Metabolism 47, 396–400.

    Article  PubMed  CAS  Google Scholar 

  35. Morris, B.W., Kouta, S., Robinson, R., MacNeil, S., and Heller S. (2000) Chromium Supplementation Improves Insulin Resistance in Patients with Type 2 Diabetes Mellitus, Diabet. Med. 17, 684–685.

    Article  PubMed  CAS  Google Scholar 

  36. Akiyama, T., Tachibana, I., Shirohara, H., Watanabe, N., and Otsuki, M. (1996) High-Fat Hypercaloric Diet Induces Obesity, Glucose Intolerance and Hyperlipidemia in Normal Adult Male Wistar Rat, Diabetes Res. Clin. Pract. 31, 27–35.

    Article  PubMed  CAS  Google Scholar 

  37. Danforth, E. (1985) Diet and Obesity, Am. J. Clin. Nutr. 41, 1132–1145.

    PubMed  Google Scholar 

  38. Kim, J.Y., Nolte, L.A., Hansen, P.A., Han, D.H., Ferguson, K., Thompson, P.A., and Holloszy, J.O. (2000) High-Fat Diet-Induced Muscle Insulin Resistance: Relationship to Visceral Fat Mass, Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R2057-R2065.

    PubMed  CAS  Google Scholar 

  39. Javadi, M., Beynen, A.C., Hovenier, R., Lankhorst, A., Lemmens, A.G., Terpstra, A.H., and Geelen, M.J. (2004) Prolonged Feeding of Mice with Conjugated Linoleic Acid Increases Hepatic Fatty Acid Synthesis Relative to Oxidation, J. Nutr. Biochem. 15, 680–687.

    Article  PubMed  CAS  Google Scholar 

  40. West, D.B., Delany, J.P., Camet, P.M., Blohm, F., Truett, A.A., and Scimeca, J. (1998) Effect of Conjugated Linoleic Acid on Body Fat and Energy Metabolism in the Mouse, Am. J. Physiol. 275, R667-R672.

    PubMed  CAS  Google Scholar 

  41. West, D.B., Truett, A.A., and Delany, J.P. (2000) Conjugated Linoleic Acid Persistently Increases Total Energy Expenditure in AKR/J Mice Without Increasing Uncoupling Protein Gene Expression, J. Nutr. 130, 2471–2477.

    PubMed  CAS  Google Scholar 

  42. Institute of Laboratory Animal Research, Commission on Life Sciences, National Research Council, (1996) Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academy Press.

    Google Scholar 

  43. Sun, D., Krishnan, A., Zaman, K., Lawrence, R., Bhattacharya, A., and Fernandes, G. (2003) Dietary n−3 Fatty Acids Decrease Osteoclastogenesis and Loss of Bone Mass in Ovariectomized Mice, J Bone. Miner. Res. 18, 1206–1216.

    Article  PubMed  CAS  Google Scholar 

  44. Bhattacharya, A., Rahman, M.M., Sun, D., Lawrence, R., Mejia, W., McCarter, R., O'Shea, M., and Fernandes, G. (2005) The Combination of Dietary Conjugated Linoleic Acid and Treadmill Exercise Lowers Gain in Body Fat Mass and Enhances Lean Body Mass in High Fat-Fed Male Balb/c Mice, J. Nutr. 135, 1124–1130.

    PubMed  CAS  Google Scholar 

  45. Bhattacharya, A., Rahman, M., Banu, J., Lawrence, R.A., McGuff, H.S., Garrett, I.R., Fischbach, M., and Fernandes, G. (2005) Inhibition of Osteoporosis in Autoimmune Disease Prone MRL/Mpj-Fas(lpr) Mice by n−3 Fatty Acids, J. Am. Coll. Nutr., 24, 200–209.

    PubMed  CAS  Google Scholar 

  46. Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F., and Turner, R.C. (1985) Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 28, 412–419.

    Article  PubMed  CAS  Google Scholar 

  47. McCarter, R.J., Shimokawa, I., Ikeno, Y., Higami, Y., Hubbard, G.B., Yu, B.P., and McMahan, C.A. (1997) Physical Activity as a Factor in the Action of Dietary Restriction on Aging: Effects in Fischer 344 Rats, Aging (Milano) 9, 73–79.

    CAS  Google Scholar 

  48. Consolazio, C.R., Johnson, R.E., and Pecora, L.T. (1963) Physiological Measurements of Metabolic Functions in Man, McGraw-Hill, New York.

    Google Scholar 

  49. Schwartz, M.W., and Kahn, S.E. (1999) Insulin Resistance and Obesity, Nature 402, 860–861.

    Article  PubMed  CAS  Google Scholar 

  50. Arner, P. (2001) Free Fatty Acids: Do They Play a Central Role in Type 2 Diabetes?, Diabetes Obes. Med. 3, S11-S19.

    Article  CAS  Google Scholar 

  51. Kissebah, A.H. (1991) Insulin Resistance in Visceral Obesity, Int. J. Obes. 15,, 109–115.

    PubMed  CAS  Google Scholar 

  52. Ryder, J.W., Portocarrero, C.P., Song, X.M., Cui, L., Yu, M., Combatsiaris, T., Galuska, D. Bauman, D.E., Barbano, D.M., Charron, M.J., Zierath, J.R., and Houseknecht, K.L. (2001) Isomer-Specific Antidiabetic Properties of Conjugated Linoleic Acid. Improved Glucose Tolerance, Skeletal Muscle Insulin Action, and UCP-2 Gene Expression, Diabetes 50, 1149–1157.

    PubMed  CAS  Google Scholar 

  53. Park, Y., Albright, K.J., Liu, W., Storkson, J.M., Cook, M.E., and Pariza, M.W. (1997) Effect of Conjugated Linoleic Acid on Body Composition in Mice, Lipids 32, 853–858.

    Article  PubMed  CAS  Google Scholar 

  54. Park, Y., Storkson, J.M., Albright, K.J., Liu, W., and Pariza, M.W. (1999) Evidence that the trans-10,cis-12 Isomer of Conjugated Linoleic Acid Induces Body Composition Changes in Mice, Lipids 34, 235–241.

    Article  PubMed  CAS  Google Scholar 

  55. Staiger, H., and Haring, H.U. (2005) Adipocytokines: Fat-Derived Humoral Mediators of Metabolic Homeostasis, Exp. Clin. Endocrinol. Diabetes 113, 67–79.

    Article  PubMed  CAS  Google Scholar 

  56. Maffei, M., Halaas, J., Rayussin, E., Pratley, R.E., Lee, G.M., Zhang, Y., Fei, H., Kim, S., Lallone, R., and Ranganathan, S. (1995) Leptin Levels in Human and Rodents: Measurements of Plasma Leptin and ob RNA in Obese and Weight-Reduced Subjects. Nat. Med., 1, 1155–1161.

    Article  PubMed  CAS  Google Scholar 

  57. Sun, C., Zhang, W., Wang, S., and Zhang, Y. (2000) Effect of Chromium Gluconate on Body Weight. Serum Leptin and Insulin in Rats, Wei. Sheng Yan. Jiu. 29, 370–371

    PubMed  CAS  Google Scholar 

  58. Yamasaki, M., Ikeda, A., Oji, M., Tanaka, Y., Hirao, A., Kasai, M., Iwata, T., Tachibana, H., and Yamada, K. (2003) Modulation of Body Fat and Serum Leptin Levels by Dietary Conjugated Linoleic Acid in Sprague-Dawley Rats Fed Various Fat-Level Diets. Nutrition 19, 30–35.

    Article  PubMed  CAS  Google Scholar 

  59. Clement, L., Poirier, H., Niot, I., Bocher, V., Guerre-Millo, M., Krief, S., Staels, B., and Besnard P. (2002) Dietary trans-10,cis-12 Conjugated Linoleic Acid Induces Hyperinsulinemia and Fatty Liver in the Mouse. J. Lipid Res. 43, 1400–1409.

    Article  PubMed  CAS  Google Scholar 

  60. Kang, K., Liu, W., Albright, K.J., Park, Y., and Pariza, M.W. (2003) Trans-10,cis-12 CLA Inhibits Differentiation of 3T3-L1 Adipocytes and Decreases PPAR Gamma Expression. Biochem. Biophys. Res. Commun. 303, 795–799.

    Article  PubMed  CAS  Google Scholar 

  61. Houseknecht, K.L., Vanden Heuvel, J.P., Moya-Camarena, S.Y., Portocarrero, C.P., Peck, L.W., Nickel, K.P., and Belury, M.A. (1998) Dietary Conjugated Linoleic Acid Normalizes Impaired Glucose Tolerance in the Zucker Diabetic Fatty fa/fa Rat, Biochem. Biophys. Res. Commun. 244, 678–682.

    Article  PubMed  CAS  Google Scholar 

  62. Choi, J.S., Jung, M.H., Park, H.S., and Song, J. (2004) Effect of Conjugated Linoleic Acid Isomers on Insulin Resistance and mRNA Levels of Genes Regulating Energy Metabolism in High-Fat-Fed Rats, Nutrition 20, 1008–1017.

    Article  PubMed  CAS  Google Scholar 

  63. Yu, Y., Correll, P.H., and Vandel Heuvel, J.P. (2002) Conjugated Linoleic Acid Decreases Production of Pro-inflammatory Products in Macrophages: Evidence for a PPAR Gamma-Dependent Mechanism. Biochim. Biophys. Acta 1581, 89–99.

    PubMed  CAS  Google Scholar 

  64. Wargent, E., Sennitt, M.V., Stocker, C., Mayes, A.E., Brown, L., O'Dowd, J., Wang, S., Einerhand, A.W., Mohede, I., Arch, J.R., and Cawthorne, M.A. (2005) Prolonged Treatment of Genetically Obese Mice with Conjugated Linoleic Acid Improves Glucose Tolerance and Lowers Plasma Insulin Concentration: Possible Involvement of PPAR Activation, Lipids Health Dis. 4, 3.

    Article  PubMed  CAS  Google Scholar 

  65. Bruun, J.M., Lihn, A.S., Verdich, C., Pedersen, S.B., Toubro, S., Astrup, A., and Richelsen, B. (2003) Regulation of Adiponectin by Adipose Tissue-Derived Cytokines: in vivo and in vitro Investigations in Humans, Am. J. Physiol. 285, E527-E533.

    CAS  Google Scholar 

  66. Staiger, H., Tschritter, O., Machann, J., Thamer, C., Fritsche, A., Maerker, E., Schick, F., Haring, H.U., and Stumvoll, M. (2003) Relationship of Serum Adiponectin and Leptin Concentrations with Body Fat Distribution in Humans. Obes. Res. 11, 368–372.

    Article  PubMed  CAS  Google Scholar 

  67. Jones, J.R., Barrick, C., Kim, K.A., Lindner, J., Blondeau, B., Fujimoto, Y., Shiota, M., Kesterson, R.A., Kahn, B.B., and Magnuson, M.A. (2005) Deletion of PPAR-gamma in Adipose Tissues of Mice Protects Against High Fat Diet-Induced Obesity and Insulin Resistance. Proc. Natl. Acad. Sci. 102, 6207–6212.

    Article  PubMed  CAS  Google Scholar 

  68. Baratta, R., Amato, S., Degano, C., Farina, M.G., Patane, G., Vigneri, R., and Frittitta, L. (2004) Adiponectin Relationship with Lipid Metabolism Is Independent of Body Fat Mass: Evidence from Both Cross-Sectional and Intervention Studies. J. Clin. Endocrinol. Metab. 89, 2665–2671.

    Article  PubMed  CAS  Google Scholar 

  69. Nagao, K., Inoue, N., Wang, Y.M., and Yanagita, T. (2003) Conjugated Linoleic Acid Enhances Plasma Adiponectin Level and Alleviates Hyperinsulinemia and Hypertension in Zucker Diabetic Fatty (fa/fa) Rats. Biochem. Biophys. Res. Commum. 310, 562–566.

    Article  CAS  Google Scholar 

  70. Inoue, N., Nagao, K., Hirata, J., Wang, Y.M., and Yanagita, T. (2004) Conjugated Linoleic Acid Prevents the Development of Essential Hypertension in Spontaneously Hypertensive Rats. Biochem. Biophys. Res. Commun. 323, 679–684.

    Article  PubMed  CAS  Google Scholar 

  71. Ohashi, A., Matsushita, Y., Kimura, K., Miyashita, K., and Saito M. (2004) Conjugated Linoleic Acid Deteriorates Insulin Resistance in Obese/Diabetic Mice in Association with Decreased Production of Adiponectin and Leptin. J. Nutr. Sci. Vitaminol. 50, 416–421.

    PubMed  CAS  Google Scholar 

  72. Akahoshi, A., Goto, Y., Murao, K., Miyazaki, T., Yamasaki, M., Nonaka, M., Yamada, K., and Sugano, M. (2002) Conjugated Linoleic Acid Reduces Body Fat and Cytokine Levels in Mice, Biosci. Biotechnol. Biochem. 66, 916–920.

    Article  PubMed  CAS  Google Scholar 

  73. Kelley, D.S., Warren, J.M., Simon, V.A., Bartolini, G., Mackey, B.E., and Erickson, K.L. (2002) Similar Effects of c9,t11-CLA and t10,c12-CLA on Immune Cell Functions in Mice. Lipids 37, 725–728.

    Article  PubMed  CAS  Google Scholar 

  74. Kelley, D.S., Simon, V.A., Taylor, P.C., Rudolph, I.L., Benito, P., Nelson, G.J., Mackey, B.E., and Erickson, K.L. (2001) Dietary Supplementation with Conjugated Linoleic Acid Increased Its Concentration in Human Peripheral Blood Mononuclear Cells, but Did not Alter Their Function, Lipids 36, 669–674.

    Article  PubMed  CAS  Google Scholar 

  75. Myers, M.J., Farrell, D.E., Evock-Clover, C.M., McDonald, M.W., and Steele, N.C. (1997) Effect of Growth Hormone or Chromium Picolinate on Swine Metabolism and Inflammatory Cytokine Production After Endotoxin Challenge Exposure. Am. J. Vet. Res. 58, 594–600.

    PubMed  CAS  Google Scholar 

  76. Wang, J.Y., Tsukayama, D.T., Wicklund, B.H., and Gustilo, R.B. (1996) Inhibition of T and B Cell Proliferation, by Titanium. Cabalt, and Chromium: Role of IL-2 and IL-6. J. Biomed. Mater. Res. 32, 655–661.

    Article  PubMed  CAS  Google Scholar 

  77. Tsuboyama-Kasaoka, N., Miyazaki, H., Kasaoka, S., and Ezaki O. (2003) Increasing the Amount of Fat in a Conjugated Linoleic Acid-Supplemented Diet Reduces Lipodystrophy in Mice, J. Nutr. 133, 1793–1799.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Fernandes.

About this article

Cite this article

Bhattacharya, A., Rahman, M.M., McCarter, R. et al. Conjugated linoleic acid and chromium lower body weight and visceral fat mass in high-fat-diet-fed mice. Lipids 41, 437–444 (2006). https://doi.org/10.1007/s11745-006-5117-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-5117-3

Keywords

Navigation