Skip to main content
Log in

Lipase-catalyzed esterification of 2-monoricinolein for 1,2(2,3)-diricinolein synthesis

  • Methods
  • Published:
Lipids

Abstract

The purpose of this investigation was to develop conditions for producing 2-monoricinoleoyl DAG. We used lipase-catalyzed hydrolysis of triricinolein to obtain 2-monoricinolein and thereafter synthesized 1,2(2,3)-diricinolein through esterification of 2-monoricinolein, using ricinoleic acid as the acyl donor. Five different 1,3-specific immobilized lipases were tested for the initial methanolysis reaction: Candida antarctica type B, Rhizomucor miehei, Rhizopus oryzae (ROL), Thermomyces lanuginosus, and Aspergillus niger. For the second esterification reaction, we investigated these five lipases plus Pseudomonas cepacia, Penicillium roquefortii, Candida rugosa, and Pseudomonas fluorescence. Toluene and diisopropyl ether (DIPE) were examined as reaction media at a water activity of 0.11. ROL in DIPE gave the highest yield of 2-monoricinolein from triricinolein, 78% after 3 h of reaction. The isolated 2-monoricinolein was esterified with ricinoleic acid for synthesis of 1,2(2,3)-diricinolein. ROL in DIPE gave the highest yield of 1,2(2,3)-diricinolein, 58% after 1 h of reaction, and NMR analysis showed that the purity was 97.2%. This methodology can used for synthesizing radiolabeled 1,2(2,3)-diricinolein to study lipid biosynthesis in castor and other oilseeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANL:

Aspergillus niger lipase

CALB:

Candida antarctica lipase type B

CRL:

Candida rugosa lipase

DGAT:

diacylglycerol acyltransferase

DIPE:

diisopropyl ether

MTBE:

methyl tert-butyl ether

PCL:

Pseudomonas cepacia lipase

PFL:

Pseudomonas fluororescence lipase

PRL:

Penicillium roquefortii lipase

RcDGAT:

the cDNA for DGAT in castor

RML:

Rhizomucor michei lipase

ROL:

Rhizopus oryzae lipase

TLL:

Thermomyces lanuginosus lipase

References

  1. Lin, J.-T., Turner, C., Liao, L.P., and McKeon, T.A. (2003) Identification and Quantification of the Molecular Species of Acylglycerols in Castor Oil by HPLC Using ELSD, J. Liq. Chrom. Rel. Technol. 26, 759–766.

    Google Scholar 

  2. Caupin, H.-J. (1997) Products from Castor Oil—Past, Present, and Future, in Lipid Technologies and Applications, (Gunstone, F. D., and Padley, F. B., eds.), pp. 787–795. Marcel Dekker, New York.

    Google Scholar 

  3. Lord, J.M., Roberts, L.M., and Robertus, J.D. (1994) Ricin: Structure, Mode of Action, and Some Current Applications, FASEB J. 8, 201–208.

    PubMed  CAS  Google Scholar 

  4. He, X.H., Turner C, Chen, G.Q., Lin, J.T., and McKeon, T.A. (2004) Cloning and Characterization of a cDNA Encoding Diacylglycerol Acyltransferase from Castor Bean, Lipids 39, 311–318.

    Article  PubMed  CAS  Google Scholar 

  5. Turner, C., He, X., Nguyen, T., Lin, J.-T., Wong, R., Lundin, R., Harden, L., and McKeon, T. (2003) Lipase-Catalyzed Methanolysis of Triricinolein in Organic Solvent to Produce 1,2(2,3)-Diricinolein, Lipids 38, 1197–1206.

    Article  PubMed  CAS  Google Scholar 

  6. Rendon, X., Lopez-Munguia, A., and Castillo, E. (2001) Solvent Engineering Applied to Lipase-Catalyzed Glycerolysis of Triolein, J. Am. Oil. Chem. Soc. 78, 1061–1066.

    Article  CAS  Google Scholar 

  7. Kosugi, Y., and Azuma, N. (1994) Synthesis of Triacylglycerol from Polyunsaturated Fatty-Acid by Immobilized Lipase, J. Am. Oil Chem. Soc., 71, 1397–1403.

    Article  CAS  Google Scholar 

  8. Hayes, D.G. (1996) The Catalytic Activity of Lipases Toward Hydroxy Fatty Acids—A Review, J. Am. Oil Chem. Soc. 73, 543–549.

    Article  CAS  Google Scholar 

  9. Gitlesen, T., Bauer, M., and Adlercreutz, P. (1997) Adsorption of Lipase on Polypropylene Powder, Biochim. Biophys. Acta 1345, 188–196.

    PubMed  CAS  Google Scholar 

  10. Halling, P.J. (1992) Salt Hydrates for Water Activity Control with Biocatalysis in Organic Media, Biotechnol. Tech. 6, 271–276.

    Article  CAS  Google Scholar 

  11. Bornscheuer, U.T., and Kazlauskas, R. J. (1999) Hydrolases in Organic Synthesis: Regio- and Stereoselective Biotransformations, Wiley-VCH, Weinheim.

    Google Scholar 

  12. Huang, K.-H., and Akoh, C.C. (1996) Enzymatic Synthesis of Structured Lipids: Transesterification of Triolein and Caprylic Acid Ethyl Ester, J. Am. Oil Chem. Soc. 73, 245–250.

    Article  CAS  Google Scholar 

  13. Millqvist, A., Adlercreutz, P., and Mattiasson, B. (1994) Lipase-Catalyzed Alcoholysis of Triglycerides for the Preparation of 2-Monoglycerides. Enzyme Microb. Technol. 16, 1042–1047.

    Article  CAS  Google Scholar 

  14. Schmid, U., Bornscheuer, U.T., Soumanou, M.M., McNeill, G.P., and Schmid, R.D. (1999) Highly Selective Synthesis of 1,3-Oleoyl-2-palmitoyl-glycerol by Lipase Catalysis, Biotechnol. Bioeng. 64, 678–684.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas McKeon.

About this article

Cite this article

Turner, C., Wani, S., Wong, R. et al. Lipase-catalyzed esterification of 2-monoricinolein for 1,2(2,3)-diricinolein synthesis. Lipids 41, 77–83 (2006). https://doi.org/10.1007/s11745-006-5073-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-5073-y

Keywords

Navigation