Skip to main content
Log in

Lipase-Catalyzed Esterification of Geraniol and Citronellol for the Synthesis of Terpenic Esters

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This article describes the synthesis of terpenic esters derived from geraniol and citronellol (geranyl and citronellyl alkanoates) through esterification reactions catalyzed by the immobilized lipases from Thermomyces lanuginosus (Lipozyme TL IM®) and Candida antarctica (Novozym 435®). Geraniol was esterified with oleic, lauric, and stearic acids; and citronellol was esterified with oleic and stearic acids. For all the synthesized flavor esters, the best conditions were 35 °C, and the molar ratio between acid and alcohol was 1:1. Geranyl and citronellyl alkanoates reached yields between 80-100% within 4 h of reaction. For the synthesis of the citronellyl and geranyl oleate, higher yields were obtained in the absence of organic solvents. For the esters from lauric and stearic acids, using solvent was indispensable to improve the miscibility between the substrates. The reuse of Novozym 435® and Lipozyme TL IM® was performed for two more cycles after the first use, with yields higher than 60%. The results demonstrated the efficiency of the reaction catalyzed by these two commercial enzymes and the feasibility of the methodology for the production of synthetic flavor esters through enzymatic catalysis. The flavor esters synthesized were not described in the literature up to the date, giving this research an innovative feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Varma, M. N., & Madras, G. (2010). Kinetics of enzymatic synthesis of geranyl butyrate by transesterification in various supercritical fluids. Biochemical Engineering Journal, 49(2), 250–255.

    CAS  Google Scholar 

  2. Ben Akacha, N., & Gargouri, M. (2015). Microbial and enzymatic technologies used for the production of natural aroma compounds: Synthesis, recovery modeling, and bioprocesses. Food and Bioproducts Processing, 94, 675–706.

    CAS  Google Scholar 

  3. Serri, N. A., Kamaruddin, A. H., & Len, K. Y. T. (2010). Studies of reaction parameters on synthesis of Citronellyl laurate ester via immobilized Candida rugosa lipase in organic media. Food and Bioproducts Processing, 88(2), 327–332.

    CAS  Google Scholar 

  4. Habulin, M., Šabeder, S., Sampedro, M. A., Knez, Z. (2008) Enzymatic synthesis of citronellol laurate in organic media and in supercritical carbon dioxide. Biochemical Engineering Journal42 (1), 6-12

    CAS  Google Scholar 

  5. Liu, D., Chen, J., & Shi, Y. (2018). Advances on methods and easy separated support materials for enzymes immobilization. TrACTrends in Analytical Chemistry., 102, 332–342.

  6. Dhake, K. P., Deshmukh, K. M., Patil, Y. P., Singhal, R. S., & Bhanage, B. M. (2011). Improved activity and stability of Rhizopus oryzae lipase via immobilization for citronellol ester synthesis in supercritical carbon dioxide. Journal of Biotechnology, 156(1), 46–51.

    CAS  PubMed  Google Scholar 

  7. Badgujar, K. C., & Bhanage, B. M. (2014). Synthesis of geranyl acetate in non-aqueous media using immobilized Pseudomonas cepacia lipase on biodegradable polymer film: Kinetic modelling and chain length effect study. Process Biochemistry, 49(8), 1304–1313.

    CAS  Google Scholar 

  8. You, P., Su, E., Yang, X., Mao, D., & Wei, D. (2011).  Carica papaya lipase-catalyzed synthesis of terpene esters. Journal of Molecular Catalysis B: Enzymatic, 71(3–4), 152–158.

    CAS  Google Scholar 

  9. Damnjanovic, J. J., Zuza, M. G., Savanovic, J. K., Bezbradica, D. I., Mijin, D. Z., Boskovic-Vragolovic, N., & Knezevic-Jugovic, Z. D. (2012). Covalently immobilized lipase catalyzing high-yielding optimized geranyl butyrate synthesis in a batch and fluidized bed reactor. Journal of Molecular Catalysis B: Enzymatic, 75, 50–59.

    CAS  Google Scholar 

  10. Da Silva, J. M. R., & Nascimento, M. D. G. (2012). Chemoenzymatic epoxidation of citronellol catalyzed by lipases. Process Biochemistry, 47(3), 517–522.

    Google Scholar 

  11. Badgujar, K. C., & Bhanage, B. M. (2015). Immobilization of lipase on biocompatible co-polymer of polyvinyl alcohol and chitosan for synthesis of laurate compounds in supercritical carbon dioxide using response surface methodology. Process Biochemistry, 50(8), 1224–1236.

    CAS  Google Scholar 

  12. Murcia, M. D., Gómez, M., Gómez, E., Gómez, J. L., Hidalgo, A. M., Sánchez, A., & Vergara, P. (2018). Kinetic modelling and kinetic parameters calculation in the lipase-catalysed synthesis of geranyl acetate. Chemical Engineering Research and Design, 138, 135–143.

    CAS  Google Scholar 

  13. Adenubi, O. T., Ahmed, A. S., Fasina, F. O., McGaw, L. J., Eloff, J. N., & Naidoo, V. (2018). Pesticidal plants as a possible alternative to synthetic acaricides in tick control: A systematic review and meta-analysis. Industrial Crops and Products, 123, 779–806.

    CAS  Google Scholar 

  14. Tavares, M., da Silva, M. R. M., de Oliveira de Siqueira, L. B., Rodrigues, R. A. S., Bodjolle-d’Almeira, L., dos Santos, E. P., & Ricci-Júnior, E. (2018). Trends in insect repellent formulations: A review. International Journal of Pharmaceutics, 539(1–2), 190–209.

    CAS  PubMed  Google Scholar 

  15. Hussein, H. S., Salem, M. Z. M., & Soliman, A. M. (2017). Repellent, attractive, and insecticidal effects of essential oils from Schinus terebinthifolius fruits and Corymbia citriodora leaves on 62 two whitefly species, Bemisia tabaci, and Trialeurodes riciniScientia Horticulturae , 216, 111–119. 

    CAS  Google Scholar 

  16. Silva, N. C. A., Miranda, J. S., Bolina, I. C. A., Silva, W. C., Hirata, D. B., de Castro, H. F., & Mendes, A. A. (2014). Biochemical Engineering Journal, 82, 1139–1149.

    Google Scholar 

  17. Carvalho, C. C. C. R., & Fonseca, M. M. R. (2006). Biotechnology Advances, 24(2), 134–142.

    PubMed  Google Scholar 

  18. Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Biotechnology Advances, 19(8), 627–662.

    CAS  PubMed  Google Scholar 

  19. Sá, A. G. A., Meneses, A. C., Lerin, L. A., Hermes, P. H. A., Sayer, C., & De Oliveira, D. (2018). Bioprocess Biosyst. Eng., 41(5), 585–591.

    Google Scholar 

  20. Ferraz, L. I. R., Possebom, G., Alvez, E. V., Cansian, R. L., Paroul, N., de Oliveira, D., & Treichel, H. (2015). Biocatalysis and Agricultural Biotechnology, 4(1), 44–48.

    Google Scholar 

  21. Badgujar, K. C., & Bhanage, B. M. (2014). Enzyme and Microbial Technology, 57, 16–25.

    CAS  PubMed  Google Scholar 

  22. Adarme, C. A. A., Leão, R. A. C., de Souza, S. P., Itabaiana, I., de Souza, R. O. M. A., & Rezende, C. M. (2018). Molecular Catalysis, 453(March), 39–46.

    CAS  Google Scholar 

  23. Nigiz, F. U. (2018). Chemical Engineering and Processing: Process Intensification, 128(December 2017), 173–179.

    CAS  Google Scholar 

  24. Jyoti, G., Keshav, A., & Anandkumar, J. (2015). Journal of Engineering (United States), 2015.

  25. Couto, R., Vidinha, P., Peres, C., Ribeiro, A. S., Ferreira, O., Oliveira, M. V., Macedo, E. A., Loureiro, J. M., & Barreiros, S. (2011). Geranyl Acetate Synthesis in a Packed-Bed Reactor Catalyzed by Novozym in Supercritical Carbon Dioxide and in Supercritical Ethane. Industrial and Engineering Chemistry Research, 50(4), 1938–1946.

    CAS  Google Scholar 

  26. Bourkaib, M. C., Randriamalala, H., Dettori, L., Humeau, C., Delaunay, S., Chevalot, I., & Guiavarc’h, Y. (2018). Enzymatic synthesis of geranyl acetate in packed bed reactor in supercritical carbon dioxide under various pressure-temperature conditions and reactor configurations. Process Biochemistry, 71, 118–126.

    CAS  Google Scholar 

  27. Trusek-holownia, A., & Noworyta, A. (2007). An integrated process: Ester synthesis in an enzymatic membrane reactor and water sorption. Journal of Biotechnology, 130(1), 47–56.

    CAS  PubMed  Google Scholar 

  28. Sá, A. G. A., de Meneses, A. C., de Araújo, P. H. H., & de Oliveira, D. (2017). A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends in Food Science and Technology, 69, 95–105.

    Google Scholar 

  29. Machado, J. R., Pereira, G. N., dos Santos de Oliveira, P., Zenevicz, M. C., Lerin, L., dos Reis Barreto de Oliveira, R., Cabral de Holanda Cavalcanti, S., Ninow, J. L., & de Oliveira, D. (2017). Process Biochemistry, 58, 114–119.

    CAS  Google Scholar 

  30. Chiaradia, V., Paroul, N., Cansian, R. L., Detofol, M. R., Lerin, L. A., Oliveira, J. V., & Oliveira, D. (2012). Applied Biochemistry and Biotechnology, 168(4), 742–751.

    CAS  PubMed  Google Scholar 

  31. Paroul, N., Grzegozeski, L. P., Chiaradia, V., Treichel, H., Cansian, R. L., Oliveira, J. V., & de Oliveira, D. (2010). Production of geranyl propionate by enzymatic esterification of geraniol and propionic acid in solvent-free system. Journal of Chemical Biology, 85(12), 1636–1641.

    CAS  Google Scholar 

  32. Castro, H. F., & Anderson, W. A. (1995). Fine Chemicals by Biotransformation Using Lipases. Quimica Nova, 18(6), 544–554.

    Google Scholar 

  33. Lerin, L., Ceni, G., Richetti, A., Kubiak, G., Vladimir Oliveira, J., Toniazzo, G., Treichel, H., Oestreicher, E. G., & Oliveira, D. (2011). Successive cycles of utilization of Novozym 435 in three different reaction systems. Brazilian Journal of Chemical Engineering, 28(2), 181–188.

    CAS  Google Scholar 

  34. Martins, A. B., da Silva, A. M., Schein, M. F., Garcia-Galan, C., Záchia Ayub, M. A., Fernandez-Lafuente, R., & Rodrigues, R. C. (2014). Comparison of the performance of commercial immobilized lipases in the synthesis of different flavor esters. Journal of Molecular Catalysis B: Enzymatic, 105, 18–25.

    CAS  Google Scholar 

  35. Yadav, G. D., & Dhoot, S. B. (2009). Synthesis of cinnamyl laurate in non-aqueous media. Journal of Molecular Catalysis B: Enzymatic, 57(1–4), 34–39.

    CAS  Google Scholar 

  36. Verdasco-Martín, C. M., Villalba, M., dos Santos, J. C. S., Tobajas, M., Fernandez-Lafuente, R., & Otero, C. (2016). Effect of chemical modification of Novozym 435 on its performance in the alcoholysis of camelina oil. Biochemical Engineering Journal, 111, 75–86.

    Google Scholar 

  37. José, C., Austic, G. B., Bonetto, R. D., Burton, R. M., & Briand, L. E. (2013). Investigation of the stability of Novozym® 435 in the production of biodiesel. Catalysis Today, 213, 73–80.

    Google Scholar 

  38. Yang, H., Mu, Y., Chen, H., Su, C., Yang, T., & Xiu, Z. (2014). Sn-1,3-specific interesterification of soybean oil with medium-chain triacylglycerol catalyzed by Lipozyme TL IM. Chinese Journal of Chemical Engineering, 22, 1016–1020.

    CAS  Google Scholar 

  39. Mohamad, N., Aziah, N., Mahat, N. A., Jamalis, J., Huyop, F., Aboul-enein, H. Y., & Abdul, R. (2015). Simple adsorption of Candida rugosa lipase onto multi-walled carbon nanotubes for sustainable production of the flavor ester geranyl propionate. Journal of Industrial and Engineering Chemistry, 32, 99–108.

    CAS  Google Scholar 

  40. Trusek Holownia, A., & Noworyta, A. (2007). An integrated process: Ester synthesis in an enzymatic membrane reactor and water sorption. Journal of Biotechnology, 130, 47–56.

    CAS  PubMed  Google Scholar 

  41. Gupta, A., Dhakate, S. R., Pahwa, M., Sinha, S., Chand, S., & Mathur, R. B. (2013). Geranyl acetate synthesis catalyzed by Thermomyces lanuginosus lipase immobilized on electrospun polyacrylonitrile nanofiber membrane. Process Biochemistry, 48(1), 124–132.

    CAS  Google Scholar 

  42. Abdullah, A. Z., Sulaiman, N. S., & Kamaruddin, A. H. (2009). Biocatalytic esterification of citronellol with lauric acid by immobilized lipase on aminopropyl-grafted mesoporous SBA-15. Biochemical Engineering Journal, 44(2-3), 263–270.

    CAS  Google Scholar 

  43. Kim, H., & Park, C. (2017). Enzymatic synthesis of phenethyl ester from phenethyl alcohol with acyl donors. Enzyme and Microbial Technology, 100, 37–44.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors also thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support and Laboratório Integrado de Engenharia Bioquímica (Lieb) at Federal University of Santa Catarina for supporting this research work.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agenor Furigo Jr.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Corrêa, L., Henriques, R.O., Rios, J.V. et al. Lipase-Catalyzed Esterification of Geraniol and Citronellol for the Synthesis of Terpenic Esters. Appl Biochem Biotechnol 190, 574–583 (2020). https://doi.org/10.1007/s12010-019-03102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03102-1

Keywords

Navigation