Skip to main content
Log in

Dietary fatty acids early in life affect lipid metabolism and adiposity in young rats

  • Articles
  • Published:
Lipids

Abstract

The purpose of this study was to evaluate the effects of four isoenergetic diets of differing fat composition on blood lipid profile and adiposity in young rats. Diets containing different lipid sources—partially hydrogenated vegetable oil (PHVO), palm oil (PO), canola oil (CO), and soy oil (SO)—were fed to lactating rats during the 21 days of lactation, and then fed to young males following weaning until the 45th, day of life. In vivo lipogenesis rate (LR), lipid content (LC), relative level of FA, and the activity of lipoprotein lipase (LPL) enzyme were measured in epididymal adipose tissue (EPI). Fasting blood lipoproteins and LC in the carcass were also appraised. Body weight of PO and PHVO groups was significantly higher than CO and SO groups from day 14 of lactation to day 45, despite the lower food intake in the PHVO group. PO and PHVO groups presented higher LR and LC in EPI than SO and CO groups. Carcass fat content was significantly higher in PHVO and PO groups than in CO and SO groups. The LPL activity in EPI was unaffected by dietary lipids. PHVO group had increased total cholesterol and TAG concentrations in comparison with the PO group, and significantly lower HDL level compared with the other groups. These results show that the kind of FA in the dietary lipid offered early in life can affect lipid metabolism and adiposity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

CO:

canola oil

EPI:

epididymal adipose tissue

LPL:

lipoprotein lipase

LR:

lipogenesis rate

MUFA:

monounsaturated FA

PHVO:

partially hydrogenated vegetable oil

PO:

palm oil

PUFA:

polyunsaturated FA

SFA:

saturated FA

SO:

soy oil

TC:

total cholesterol

tFA:

trans FA

References

  1. Elmadfa, I., and Freisling, H. (2005) Fat Intake. Diet Variety and Health Promotion, Forum Nutr. 57, 1–10.

    PubMed  Google Scholar 

  2. Hill, J.O., Melanson, E.L., and Wyatt, H.T. (2000) Dietary Fat Intake and Regulation of Energy Balance: Implications for Obesity. J. Nutr. 130, 284S-288S.

    PubMed  CAS  Google Scholar 

  3. Ballesteros, M.N., Cabrera, R.M., Saucedo, M. del S., Aggarwal, D., Shachter, N.S., and Fernandez, M.L. (2005) High Intake of Saturated, Fat and Early Occurrence of Specific Biomarkers May Explain the Prevalence of Chronic Disease in Northern Mexico. J. Nutr. 135, 70–73.

    PubMed  CAS  Google Scholar 

  4. Khor, G.L. (2004) Dietary Fat Quality: A Nutritional Epidemiologist's View, Asia Pacific J. Clin. Nut. 13, S22.

    Google Scholar 

  5. Ailhaud, G., and Guesnet, P. (2004) Fatty Acid Composition of Fats Is Early Determinant of Childhood Obesity: A Short Review and an Opinion. The International Association for the Study of Obesity, Obes. Rev. 5, 21–26.

    Article  PubMed  CAS  Google Scholar 

  6. Gaiva, M.H.G., Couto, R.C., Oyama, L.M., Couto, G.E.C., Silveira, V.L.F., Riberio, E.B., and Nascimento, C.M.O. (2001) Polyunsaturated Fatty Acid-Rich Diets: Effect on Adipose Tissue Metabolism in Rats, Br. J. Nutr. 86, 371–377.

    PubMed  CAS  Google Scholar 

  7. Drevon, C.A. (2005) Fatty Acids and Expression of Adipokines, Biochim. Biophys. Acta 30, 287–292.

    Google Scholar 

  8. Doucet, E., Almeras, N., White, M.D., Depres, J.P., Bouchard, C., and Tremblay, A. (1998) Dietary Fat Composition and Human Adiposity, Eur. J. Clin. Nutr. 52, 2–6.

    Article  PubMed  CAS  Google Scholar 

  9. Cleary, M.P., Phillips, F.C., and Morton, A.A. (1999) Genotype and Diet Effects in Lean and Obese Zucker Rats Fed Either Safflower or Coconut Oil Diets, Proc. Soc. Exp. Biol. Med. 220, 153–161.

    Article  PubMed  CAS  Google Scholar 

  10. Reeves, P.G., Nielsen, F.H., and Fahey, G.C. (1993) American Institute of Nutrition (AIN). Purified Rodent Diets, J. Nutr. 123, 1939–1951.

    PubMed  CAS  Google Scholar 

  11. Lepage, G., and Roy, C.C. (1986) Direct Transesterification, of All Classes of Lipid in One-Step Reaction, J. Lipid. Res. 27, 114–120.

    PubMed  CAS  Google Scholar 

  12. Nilsson-Ehle, P., and Schotz, M.C. (1972) A Stable Radioactive Substrate Emulsion for Assay of Lipoprotein Lipase, J. Lipid. Res. 17, 536–541.

    Google Scholar 

  13. Llobera, M., Montes, A., and Herrera, E. (1979) Lipoprotein-Lipase Activity in Liver of the Rat Fetus, Biochem. Biophys. Res. Commun. 91, 272–277.

    Article  PubMed  CAS  Google Scholar 

  14. Lowry, O.H. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–268.

    PubMed  CAS  Google Scholar 

  15. Stansbie, D., Browsey R.W., Crettaz, M., and Demton, R.M. (1976) Acute Effects in vivo of Anti-Insulin, Serum on Rates of Fatty Acids Synthesis and Activities of Acetyl-Coenzyme A Carboxylase and Pyruvate Dehydrogenase in Liver and Epididymal Adipose Tissue of Fed Rats, Biochem. J. 160, 413–416.

    PubMed  CAS  Google Scholar 

  16. Robinson, A.M., and Williamson, D.H. (1977) Comparison of Glucose Metabolism in the Lactating Mammary of the Rat in vivo and in vitro: Effects of Starvation, Prolactin or Insulin, Deficiency, Biochem. J. 164, 153–159.

    PubMed  CAS  Google Scholar 

  17. Leshner, A.I., Litwin, V.A., and Squibb, R.L. (1972) A Simple Method for Carcass Analysis, Anal. Biochem. 9, 281–282.

    CAS  Google Scholar 

  18. Loh, M.Y. Flatt, W.P., Martin, R.J., and Hausman, D.B. (1998) Dietary Fat Type and Level Influence Adiposity Development in Obese but Not Lean Zucker Rats, Proc. Soc. Exp. Biol. Med. 218, 38–44.

    PubMed  CAS  Google Scholar 

  19. Lemonnier, D., Alexiu, A., and Lanteaume, M.T. (1973) Effect of Two Dietary Lipids on the Cellularity of the Rat Adipose Tissue. J. Physiol. 66, 729–733.

    CAS  Google Scholar 

  20. Shillabeer, G., and Lau, D.C.W. (1994) Regulation of New Fat Cell Formation in Rats: The Role of Dietary Fats, J. Lipid. Res. 35, 592–600.

    PubMed  CAS  Google Scholar 

  21. Colditz, G.A., Willet, W.C., Stampfer, M.J., London, S.J., Segal, M.R., and Speizer, F.E. (1990) Patterns of Weight Change and Their Relation to Diet in a Cohort of Healthy Women, Am. J. Clin. Nutr. 51, 1100–1105.

    PubMed  CAS  Google Scholar 

  22. Panigrahi, K., and Sampugna, J. (1993) Effects of trans Fatty Acids on Lipid Accumulation in 3T3-L1 Cells, Lipids 28, 1069–1074.

    Article  PubMed  CAS  Google Scholar 

  23. Sabarense, C.M., and Mancini Filho, J. (2003) Efeito da Gordura Vegetal Parcialmente Hidrogenada sobre a Incorporação de Ácidos Graxos trans em Tecidos de Ratos, Rev. Nutr. Campinas 16, 399–407.

    CAS  Google Scholar 

  24. Hausman, D.B., Loh, M.Y., Flatt, W.P., and Martin, R.J. (1997) Adipose Tissue Expansion, and the Development of Obesity: Influence of Dietary Fat Type, Asia Pacific J. Clin. Nutr. 6, 49–55.

    Google Scholar 

  25. Girard, J., Ferré, P., Pégorier, J.P., and Dué, P.H. (1992) Adaptation of Glucose and Fatty Acid Metabolism During Perinatal Period and Suckling-Weaning Transition, Physiol. Rev. 72, 507–562.

    PubMed  CAS  Google Scholar 

  26. Raclot, T. (2003) Selective Mobilization of Fatty Acids from Adipose Tissue Triacylglycerols, Prog. Lipid. Res. 42, 257–288.

    Article  PubMed  CAS  Google Scholar 

  27. Assumpção, R.P., dos Santos, F.D., de Mattos Machado, P., Barreto, G.F., and Tavares do Carmo, M.G. (2004) Effect of Variation of trans-Fatty Acid in Lactating Rats' Diet, on Lipoprotein Lipase Activity in Mammary Gland, Liver, and Adipose Tissue, Nutrition 20, 806–811.

    Article  PubMed  Google Scholar 

  28. Takeuchi, H., Matsuo, T., Tokuyama, K., Shimomura, Y., and Suzuki, M. (1995) Diet-Induced Thermogenesis Is Lower in Rats Fed a Lard Diet Than in Those Fed a High Oleic Acid Safflower Oil Diet or a Linseed Oil Diet, J. Nutr. 125, 920–925.

    PubMed  CAS  Google Scholar 

  29. Cha, M.C., and Jones, P.J. (1997) Dietary Fatty Acid Type Related Changes in Tissue Cholesterol and Fatty Acid Synthesis Are Influenced by Energy Intake Level in Rats, J. Am. Coll. Nutr. 16, 592–599.

    PubMed  CAS  Google Scholar 

  30. Baylin, A., Kabagambe, E.K., Siles, X., and Campos, H. (2002) Adipose Tissue Biomarkers of Fatty Acid Intake, Am. J. Clin. Nutr. 76, 750–757.

    PubMed  CAS  Google Scholar 

  31. Lands, W.E. (1992) Biochemistry and Physiology of n-3 Fatty Acids, FASEB J. 6, 2530–2536.

    PubMed  CAS  Google Scholar 

  32. Kliewer, S.A., Lenhard, J.M., Wilson, T.M., Patel, I., Morris, D.C., and Lehmann, J.M. (1995) A Prostaglandin J2 Metabolite Binds Peroxisome Proliferator-Activated Receptor Gamma and Promotes Adipocyte Differentiation, Cell 83, 813–819.

    Article  PubMed  CAS  Google Scholar 

  33. Vassaux, G., Gaillard, D., Darimont, C., Ailhaud, G., and Negrel, R. (1992) Differential Response of Preadipocytes and Adipocytes to Prostacyclin and Prostaglandin E2: Physiological Implications, Endocrinology 131, 2393–2398.

    Article  PubMed  CAS  Google Scholar 

  34. Serrero, G., and Lepak, N. (1996) Endocrine and Paracrine Negative Regulators of Adipose Differentiation, Int. J. Obes. Relat. Metab. Disord. 20, S58-S64.

    PubMed  CAS  Google Scholar 

  35. Mesink, R.P., and Katan, M.B. (1990) Effect of Dietary trans Fatty Acids on High-Density and Low Density Lipoprotein Cholesterol Levels in Healthy Subjects, N. Engl. J. Med. 23, 439–445.

    Google Scholar 

  36. Denke, M.A. (1995) Trans Fatty Acids and Coronary Heart Disease Risk: Serum Lipid Concentrations in Humans, Am. J. Clin. Nutr. 62, 693–700.

    Google Scholar 

  37. Chandrasekharan, N. (1999) Changing Concepts in Lipid Nutrition in Health and Disease, Med. J. Malaysia 54, 408–427.

    PubMed  CAS  Google Scholar 

  38. Choudhury, N., Tan, L., and Truswell, A.S. (1995) Comparison of Palmolein and Olive Oil: Effects on Plasma Lipids and Vitamin E in Young Adults, Am. J. Clin. Nutr. 61, 43–51.

    Google Scholar 

  39. Truswell, A.S., Choudhury, N., and Roberts, D.C.K. (1992) Double Blind Comparison of Plasma Lipids in Healthy Subjects Eating Potato Chips Fried in Palmolein or Canola, Nutr. Res. 12, S43-S52.

    Article  CAS  Google Scholar 

  40. Wahrburg, U. (2004) What Are the Health Effects of Fat? Eur. J. Nutr. 43, 6–11.

    Article  Google Scholar 

  41. Renaud, S.C., Ruf, J.C., and Petithory, D. (1995) The Positional Distribution of Fatty Acids in Palm Oil and Lard, Influences Their Biologic Effects in Rats, J. Nutr. 125, 229–237.

    PubMed  CAS  Google Scholar 

  42. Carnielli, V.P., Luijendijk, I.H.T., van Beek, R.H.T., Boerma, G.J.M., Degenhart, H.J., and Sauer, P.J.J. (1995) Effect, of Dietary Triacylglycerol Fatty Acid Positional Distribution on Plasma Lipid Classes and Their Fatty Acid Composition in Preterm Infants, Am. J. Clin. Nutr. 62, 776–781.

    PubMed  CAS  Google Scholar 

  43. Leyton, J., Drury, P.J., and Crawford, M.A., (1987) Differential Oxidation of Saturated and Unsaturated Fatty Acids in vivo in the Rat, Br. J. Nutr. 51, 383–393.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria G. Tavares do Carmo.

About this article

Cite this article

Silva, A.P.S., Guimarães, D.E.D., Mizurini, D.M. et al. Dietary fatty acids early in life affect lipid metabolism and adiposity in young rats. Lipids 41, 535–541 (2006). https://doi.org/10.1007/s11745-006-5002-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-5002-0

Keywords

Navigation