Skip to main content
Log in

Effects oftrans fatty acids on lipid accumulation in 3T3-L1 cells

  • Article
  • Published:
Lipids

Abstract

Previous work had shown that dietarytrans fatty acids (tFA) resulted in decreased fat deposition in adipose tissue. This study was conducted to see iftFA influence lipid accumulation in Swiss mouse fibroblast 3T3-L1 cells, which are widely used as an adipocyte model. Cells were cultured in the presence of experimental or control growth media supplemented with fatty acids complexed to bovine serum albumin. Fatty acid compositions of experimental and control growth media were similar except that the octadecenoates in the control growth media werecis fatty acids, whereas those in the experimental media contained bothcis andtrans fatty acids. Cell-conditioned media and cellular lipids at the preadipocyte and differentiating adipocyte stages were analyzed. At both stages of development, less fat accumulated, in cells cultured in the presence oftFA, due primarily to a decrease in the nonpolar lipid content of cells exposed totFA, and linoleate to arachidonate ratios were higher in cells supplemented withtFA. Calculations comparing sums of saturated and monounsaturated fatty acids in cells at the differentiating adipocyte stage suggested thattFA may have replaced monoun-saturated fatty acids in the nonpolar lipid fraction and saturated fatty acids in the polar lipid fraction. The results of these studies are in good agreement with thein vivo effects oftFA seen in previous work with mouse adipose tissue. It was concluded that the 3T3-L1in vitro model is an appropriate system for further studies oftFA and lipid metabolism in adipose tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

cAMP:

3′, 5′-cyclic adenosine monophosphate

CGM:

control growth medium

DA:

differentiating adipocytes

DEX:

dexamethasone

DMEM:

Dulbecco's modified Eagle medium

EGM:

experimental growth medium

FAME:

fatty acid methyl esters

FCS:

fetal calf serum

GM:

growth medium

HDL:

high density lipoprotein

LDL:

low density lipoprotein

LPSR-1:

low protein serum replacement

MIX:

3-isobutyl-1-methyl xanthine

NEAA:

nonessential amino acids

PA:

preadipocytes

PBS:

phosphate buffered saline

tFA:

trans fatty acids

TLC:

thin-layer chromatography

3T3-L1:

subclone of Swiss mouse embryo 3T3 fibroblasts

References

  1. Carpenter, D.L., and Slover, H.T. (1973)J. Am. Oil Chem. Soc. 50, 372–375.

    PubMed  CAS  Google Scholar 

  2. Smith, L.M., Dunkley, W.M., Franke, A., and Dairiki, L. (1978)J. Am. Oil Chem. Soc. 55 257–260.

    PubMed  CAS  Google Scholar 

  3. Slover, H.T., and Lanza, E. (1979)J. Am. Oil Chem. Soc. 56, 933–936.

    CAS  Google Scholar 

  4. Enig, M.G., Pallansch, L.A., Sampugna, J., and Keeney, M. (1983)J. Am. Oil Chem. Soc. 60, 1788–1795.

    CAS  Google Scholar 

  5. Dutton, H.J. (1979)Geometrical and Positional Fatty Acid Isomers (Emken, E.A., and Dutton, H.J., eds.) pp. 1–16 American Oil Chemists' Society, Champaign.

    Google Scholar 

  6. Hunter, J.E., and Applewhite, T.H. (1986)Am. J. Clin. Nutr. 44, 707–717.

    PubMed  CAS  Google Scholar 

  7. Enig, M.G., Atal, S., Keeney, M., and Sampugna, J. (1990)J. Am. Coll. Nutr. 9, 471–486.

    PubMed  CAS  Google Scholar 

  8. Emken, E.A. (1984)Ann. Rev. Nutr. 4, 339–376.

    Article  CAS  Google Scholar 

  9. Lands, W.E.M. (1979) inGeometrical and Positional Fatty Acid Isomers (Emken, E.A., and Dutton, H.J., eds.) pp. 181–212, American Oil Chemists' Society, Champaign.

    Google Scholar 

  10. Enig, M.E., Munn, R.J. and Keeney, M. (1978)Fed. Proc. Fed. Am. Soc. Exp. Biol. 37, 2215–2220.

    CAS  Google Scholar 

  11. Thomas, L.H., Winter, J.A., and Scott, R.C. (1983)J. Epid. Commun. Health 37, 16–21.

    Article  CAS  Google Scholar 

  12. Thomas, L.H., Jones, P.R., Winter, J.A. and Smith, H. (1981)Am. J. Clin. Nutr. 34, 877–886.

    PubMed  CAS  Google Scholar 

  13. Mensink, R.P., and Katan, M.B. (1990)N. Engl. J. Med. 323, 439–445.

    Article  PubMed  CAS  Google Scholar 

  14. Zock, P., and Katan, M. (1992)J. Lipid Res. 33, 399–410.

    PubMed  CAS  Google Scholar 

  15. Mensink, R., Zock, P., Katan, M., and Hornstra, G. (1992)J. Lipid Res. 33, 1493–1501.

    PubMed  CAS  Google Scholar 

  16. Nestel, P., Nopakes, M., Belling, B., McArthur, R., Clifton, P., Janus, E., and Abby, M. (1992)J. Lipid Res. 33, 1029–1036.

    PubMed  CAS  Google Scholar 

  17. Largrost, L. (1992)Biochim. Biophys. Acta 1124, 159–162.

    Google Scholar 

  18. Teter, B.B., Sampugna, J., and Keeney, M. (1990)J. Nutr. 120, 818–824.

    PubMed  CAS  Google Scholar 

  19. Atal, S. (1990) The Effects of DietaryTrans Fatty Acids on Adipose Tissue Composition and Metabolism in Male C57 B1/6J Mice, Ph.D. Thesis, University of Maryland, College Park, pp. 27–66.

    Google Scholar 

  20. Green, H., and Kehinde, O. (1974)Cell 1, 113–116.

    Article  CAS  Google Scholar 

  21. Green, H., and Kehinde, O. (1975)Cell 5, 19–27.

    Article  PubMed  CAS  Google Scholar 

  22. Green, H., and Kehinde, O. (1976)Cell 7, 105–113.

    Article  PubMed  CAS  Google Scholar 

  23. Kuri-Harcuch, W., and Green, H. (1977)J. Biol. Chem. 252, 2158–2160.

    PubMed  CAS  Google Scholar 

  24. Williams, I.H., and Polakis, S.E. (1977)Biochem. Biophys. Res. Commun. 77, 175–186.

    Article  PubMed  CAS  Google Scholar 

  25. Kuri-Harcuch, W., Wise, L.S., and Green, H. (1978)Cell 14, 53–59.

    Article  PubMed  CAS  Google Scholar 

  26. Kuri-Harcuch, W., and Green, H. (1978)Proc. Natl. Acad. Sci. USA 75, 6107–6109.

    Article  PubMed  CAS  Google Scholar 

  27. Weiss, G.H., Rosen, O.M., and Rubin, C.S. (1980)J. Biol. Chem. 255, 4751–4757.

    PubMed  CAS  Google Scholar 

  28. Student, A.K., Hsu, R.Y., and Lane, M.D. (1980)J. Biol. Chem. 255, 4745–4750.

    PubMed  CAS  Google Scholar 

  29. Ahmad, P.M., Russell, T.R., and Ahmed, F. (1979)Biochem. J. 182, 509–514.

    PubMed  CAS  Google Scholar 

  30. Kawamura, M., Jensen, D.F., Wanceewicz, E.V., Jay, L.L., Khoo, J.C., and Steinberg, D. (1981)Proc. Natl. Acad. Sci. USA 78, 732–736.

    Article  PubMed  CAS  Google Scholar 

  31. Miller, R.E., Hackenberg, R., Gershman, R., and Gershman, H. (1978)Proc. Natl. Acad. Sci. USA 75, 1418–1422.

    Article  PubMed  CAS  Google Scholar 

  32. Freytag, S.O., and Utter, M.F. (1980)Proc. Natl. Acad. Sci. USA 77, 1321–1325.

    Article  PubMed  CAS  Google Scholar 

  33. Spooner, P.M., Chernick, S.S., Garrison, M.M., and Scow, R.O. (1979)J. Biol. Chem. 254, 10021–10029.

    PubMed  CAS  Google Scholar 

  34. Grunfeld, C., Baird, K.L., and Kahn, R. (1981)Biochem. Biophys. Res. Commun. 103, 219–226.

    Article  PubMed  CAS  Google Scholar 

  35. Rubin, C.S., Hirsch, A., Fung, C., and Rossen, O.M. (1978)J. Biol. Chem. 253, 7570–7578.

    PubMed  CAS  Google Scholar 

  36. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957)J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  37. Sampugna, J., Pallansch, L.A., Enig, M.G., and Keeney, M. (1982)J. Chromatogr. 249, 245–255.

    Article  CAS  Google Scholar 

  38. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951)J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  39. Mahfouz, M., Johnson, S., and Holman, R.T. (1980)Lipids 15, 100–107.

    Article  PubMed  CAS  Google Scholar 

  40. Rosenthal, M.D., and Whitehurst, M.C. (1983)Biochim. Biophys. Acta 753, 450–459.

    PubMed  CAS  Google Scholar 

  41. Rosenthal, M.D., and Dolovesco, M.A. (1984)Lipids 19, 869–874.

    Article  PubMed  CAS  Google Scholar 

  42. Osmundsen, H. (1982) inPeroxisomes and Glyoxisomes (Rindl, H., and Lazarow, P.B., eds.) pp. 13–29, New York Academy of Sciences, New York.

    Google Scholar 

  43. Lawson, L.D., and Holman, R.T. (1981)Biochim. Biophys. Acta 665, 60–65.

    PubMed  CAS  Google Scholar 

  44. Lawson, L.D., and Kummerow, F.A. (1979)Biochim. Biophys. Acta 573, 245–254.

    PubMed  CAS  Google Scholar 

  45. Norseth, J. (1979)Biochim. Biophys. Acta 575, 1–9.

    PubMed  CAS  Google Scholar 

  46. Thomassen, M.S., Helgrud, P., and Norum, K.R. (1985)Biochem. J. 255, 301–306.

    Google Scholar 

  47. Gimenez-Gadea, Y.B. (1984) Effects ofTrans Fatty Acids on Murine Hepatic Peroxisomes, M.S. Thesis, University of Maryland, College Park, pp. 20–58.

    Google Scholar 

  48. Flatmark, T., Nilsson, A., Kvannes, J., and Christiansen, E.N. (1988)Biochim. Biophys. Acta 962, 122–130.

    PubMed  CAS  Google Scholar 

  49. Ide, T., Watanabe, M., Sugano, M., and Yamamoto, I. (1987)Lipids 22, 6–10.

    Article  PubMed  CAS  Google Scholar 

  50. Thomassen, M.S., Norseth, J., and Christiansen, E.N. (1985)Lipids 20, 668–674.

    Article  PubMed  CAS  Google Scholar 

  51. Khoo, J.C., Steinberg, D., Huang, J.J., and Vagelos, P.R. (1976)J. Biol. Chem. 251, 2882–2890.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Panigrahi, K., Sampugna, J. Effects oftrans fatty acids on lipid accumulation in 3T3-L1 cells. Lipids 28, 1069–1074 (1993). https://doi.org/10.1007/BF02537072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537072

Keywords

Navigation