Skip to main content
Log in

Lymphatic Absorption and Deposition of Various Plant Sterols in Stroke-Prone Spontaneously Hypertensive Rats, a Strain Having a Mutation in ATP binding cassette transporter G5

  • Original Article
  • Published:
Lipids

Abstract

ATP binding cassette transporter G5 (ABCG5) and ATP binding cassette transporter G8 (ABCG8) have been suggested to transport absorbed plant sterols and cholesterol from enterocytes to the intestinal lumen and from hepatocytes to bile. It has been thought that mutations of ABCG5 or ABCG8 cause the deposition of plant sterols in the body. In the present study, lymphatic absorption of various plant sterols and their deposition in various tissues was investigated in stroke-prone spontaneously hypertensive rats (SHRSP), having a mutation in Abcg5 and depositing plant sterols in the body. The order of lymphatic 24-h recovery of plant sterols was as follows: campesterol > sitosterol > brassicasterol > stigmasterol = sitostanol. When SHRSP were fed a diet containing one of the plant sterols, the depositions of campesterol and sitosterol were comparatively higher than those of brassicasterol, stigmasterol and sitostanol. Highly positive correlations were obtained between lymphatic recovery of plant sterols and their levels in plasma, liver, adipose tissue and heart. The tendency of differential absorption of plant sterols to the lymph in SHRSP was similar to that in normal Wistar rats previously reported by us (Hamada et al. Lipids 41:551–556, 2006). These observations suggest that differential absorption of various plant sterols is kept in SHRSP in spite of a mutation in Abcg5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABCG5:

ATP binding cassette transporter G5

ABCG8:

ATP binding cassette transporter G8

ACAT:

Acylcoenzyme A:cholesterol acyltransferase

NPC1L1:

Niemann-Pick C1 like 1 protein

SHRSP:

Stroke-prone spontaneously hypertensive rats

References

  1. Katan MB, Grundy SM, Jones P, Law M, Miettinen T, Paoletti R (2003) Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin Proc 78:965–978

    Article  PubMed  CAS  Google Scholar 

  2. Heinemann T, Axtmann G, Bergmann K (1993) Comparison of intestinal absorption of cholesterol with different plant sterols in man. Eur J Clin Invest 23:827–831

    Article  PubMed  CAS  Google Scholar 

  3. Connor WE, Lin DS (1981) Absorption and transport of shellfish sterols in human subjects. Gastroenterology 81:276–284

    PubMed  CAS  Google Scholar 

  4. Ikeda I, Sugano M (1978) Comparison of absorption and metabolism of β-sitosterol and β-sitostanol in rats. Atherosclerosis 30:227–237

    Article  PubMed  CAS  Google Scholar 

  5. Vahouny GV, Connor WE, Subramaniam S, Lin DS, Gallo LL (1983) Comparative lymphatic absorption of sitosterol, stigmasterol, and fucosterol and differential inhibition of cholesterol absorption. Am J Clin Nutr 37:805–809

    PubMed  CAS  Google Scholar 

  6. Vahouny GV, Connor WE, Roy T, Lin DS, Gallo LL (1981) Lymphatic absorption of shellfish sterols and their effects on cholesterol absorption. Am J Clin Nutr 34:507–513

    PubMed  CAS  Google Scholar 

  7. Hamada T, Goto H, Yamahira T, Sugawara T, Imaizumi K, Ikeda I (2006) Solubility in and affinity for the bile salt micelle of plant sterols are important determinants of their intestinal absorption in rats. Lipids 41:551–556

    Article  PubMed  CAS  Google Scholar 

  8. Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, Kwiterovich P, Shan B, Barnes R, Hobbs HH (2000) Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290:1771–1775

    Article  PubMed  CAS  Google Scholar 

  9. Lee MH, Lu K, Hazard S, Yu H, Shulenin S, Hidaka H, Kojima H, Allikmets R, Sakuma N, Pegoraro R, Srivastava AK, Salen G, Dean M, Patel SB (2001) Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nature Genet 27:79–83

    Article  PubMed  CAS  Google Scholar 

  10. Lu K, Lee MH, Patel SB (2001) Dietary cholesterol absorption; more than just bile. Trends Endocrinol Metab 12:314–320

    Article  PubMed  CAS  Google Scholar 

  11. Igel M, Giesa U, Lütjohann D, Bergmann K (2003) Comparison of the intestinal uptake of cholesterol, plant sterols, and stanols in mice. J Lipid Res 44:533–538

    Article  PubMed  CAS  Google Scholar 

  12. Yu L, Hammer RE, Li-Hawkins J, Bergmann K, Lütjohann D, Cohen JC, Hobbs HH (2002) Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci USA 99:16237–16242

    Article  PubMed  CAS  Google Scholar 

  13. Ikeda I, Nakagiri H, Sugano M, Ohara S, Hamada T, Nonaka M, Imaizumi K (2001) Mechanisms of phytosterolemia in stroke-prone spontaneously hypertensive and WKY rats. Metabolism 50:1361–1368

    Article  PubMed  CAS  Google Scholar 

  14. Ratnayake WMN, Plouffe L, Hollywood R, L’Abbé MR, Hidiroglou N, Sarwar G, Mueller R (2000) Influence of sources of dietary oils on the life span of stroke-prone spontaneously hypertensive rats. Lipids 35:409–420

    Article  PubMed  CAS  Google Scholar 

  15. Ratnayake WMN, L’Abbé MR, Mueller R, Hayward S, Plouffe L, Hollywood R, Trick K (2000) Vegetable oils high in phytosterols make erythrocytes less deformable and shorten the life span of stroke-prone spontaneously hypertensive rats. J Nutr 130:1166–1178

    PubMed  CAS  Google Scholar 

  16. Scoggan KA, Gruber H, Lariviere K (2003) A missense mutation in the Abcg5 gene causes phytosterolemia in SHR, stroke-prone SHR, and WKY rats. J Lipid Res 44:911–916

    Article  PubMed  CAS  Google Scholar 

  17. Yu H, Pandit B, Klett E, Lee MH, Lu K, Helou K, Ikeda I, Egashira N, Sato M, Klein R, Batta A, Salen G, Patel SB (2003) The rat STSL locus: characterization, chromosomal assignment, and genetic variations in sitosterolemic hypertensive rats. BMC Cardiovasc Disord 3:4

    Article  PubMed  Google Scholar 

  18. Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    PubMed  CAS  Google Scholar 

  19. Ikeda I, Matsuoka R, Hamada T, Mitsui K, Imabayashi S, Uchino A, Sato M, Kuwano E, Itamura T, Yamada K, Tanaka K, Imaizumi K (2002) Cholesterol esterase accelerates intestinal cholesterol absorption. Biochim Biophys Acta 1571:34–44

    PubMed  CAS  Google Scholar 

  20. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  21. Ikeda I, Tanaka K, Sugano M, Vahouny GV, Gallo LL (1988) Discrimination between cholesterol and sitosterol for absorption in rats. J Lipid Res 29:1583–1591

    PubMed  CAS  Google Scholar 

  22. Altmann SW, Davis HR, Zhu L, Yao X, Hoos LM, Tetzloff G, Iyer SN, Maguire M, Golovko A, Zeng M, Wang L, Murgolo N, Graziano MP (2004) Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303:1201–1204

    Article  PubMed  CAS  Google Scholar 

  23. Davis HR, Zhu L, Hoos LM, Tetzloff G, Maguire M, Liu J, Yao X, Iyer SN, Lam M, Lund EG, Detmers PA, Graziano MP, Altmann SW (2004) Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 279:33586–33592

    Article  PubMed  CAS  Google Scholar 

  24. Yu L, Bergmann K, Lütjohann D, Hobbs HH, Cohen JC (2005) Ezetimibe normalizes metabolic defects in mice lacking ABCG5 and ABCG8. J Lipid Res 46:1739–1744

    Article  PubMed  CAS  Google Scholar 

  25. Ros E (2000) Intestinal absorption of triglyceride and cholesterol. Dietary and pharmacological inhibition to reduce cardiovascular risk. Atherosclerosis 151:357–379

    Article  PubMed  CAS  Google Scholar 

  26. Field FJ, Mathur SN (1983) β-Sitosterol: esterification by intestinal acylcoenzyme A:cholesterol acyltransferase (ACAT) and its effect on cholesterol esterification. J Lipid Res 24:409–417

    PubMed  CAS  Google Scholar 

  27. Subbiah MTR, Kuksis A (1973) Differences in metabolism of cholesterol and sitosterol following intravenous injection in rats. Biochim Biophys Acta 306:95–105

    PubMed  CAS  Google Scholar 

  28. Tuckey RC, Cameron KJ (1993) Side-chain specificities of human and bovine cytochromes P-450SCC. Eur J Biochem 217:209–215

    Article  PubMed  CAS  Google Scholar 

  29. Arthur JR, Blair AF, Boyd GS, Mason JI, Suckling KE (1976) Oxidation of cholesterol and cholesterol analogues by mitochondrial preparations of steroid-hormone-producing tissue. Biochem J 158:47–51

    PubMed  CAS  Google Scholar 

  30. Yang C, Yu L, Li W, Xu F, Cohen JC, Hobbs HH (2004) Disruption of cholesterol homeostasis by plant sterols. J Clin Invest 114:813–822

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuo Ikeda.

About this article

Cite this article

Hamada, T., Egashira, N., Nishizono, S. et al. Lymphatic Absorption and Deposition of Various Plant Sterols in Stroke-Prone Spontaneously Hypertensive Rats, a Strain Having a Mutation in ATP binding cassette transporter G5. Lipids 42, 241–248 (2007). https://doi.org/10.1007/s11745-006-3015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-3015-3

Keywords

Navigation