Skip to main content
Log in

Sulfur-substituted and α-methylated fatty acids as peroxisome proliferator-activated receptor activators

  • Published:
Lipids

Abstract

FA with varying chain lengths and an α-methyl group and/or a sulfur in the β-position were tested as peroxisome proliferator-activated receptor (PPAR)α,-δ(β), and-γ ligands by transient transfection in COS-1 cells using chimeric receptor expression plasmids, containing cDNAs encoding the ligand-binding domain of PPARα,-δ, and-γ. For PPARα, an increasing activation was found with increasing chain length of the sulfur-substituted FA up to C14-S acetic acid (tetradecylthioacetic acid=TTA). The derivatives were poor, and nonsignificant, activators of PPARδ. For PPARγ, activation increased with increasing chain length up to C16-S acetic acid. A methyl group was introduced in the α-position of palmitic acid, TTA, EPA, DHA, cis9,trans11CLA, and trans10,cis12 CLA. An increased activation of PPARα was obtained for the α-methyl derivatives compared with the unmethylated FA. This increase also resulted in increased expression of the two PPARα target genes acyl-CoA oxidase and liver FA-binding protein for α-methyl TTA, α-methyl EPA, and α-methyl DHA. Decreased or altered metabolism of these derivatives in the cells cannot be excluded. In conclusion, saturated FA with sulfur in the β-position and increasing carbon chain length from C9−S acetic acid to C14−S acetic acid have increasing effects as activators of PPARα and-γ in transfection assays. Furthermore, α-methyl FA derivatives of a saturated natural FA (palmitic acid), a sulfur-substituted FA (TTA), and PUFA (EPA, DHA, c9,t11 CLA, and t10,c12 CLA) are stronger PPARα activators than the unmethylated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AcA:

acetic acid

ACO:

acyl-CoA oxidase 1

BRL 49653:

rosiglitazone

HRMS:

high-resolution MS

LBD:

ligand-binding domain

L-FABP:

liver-specific fatty acid-binding protein

PPAR:

peroxisome proliferator-activated receptor

RXR:

retinoid X receptor

TTA:

tetradecylthioacetic acid (C14−S acetic acid)

USAS:

upstream activating sequence

WY-14,643:

pirinixic acid, also know as 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid

References

  1. Brun, R.P., and Spiegelman, B.M. (1997) PPARγ and the Molecular Control of Adipogenesis, J. Endocrinol. 155, 217–218.

    Article  PubMed  CAS  Google Scholar 

  2. Schoonjans, K., Staels, B., and Auwerx, J. (1996) Role of the Peroxisome Proliferator-Activated Receptor (PPAR) in Mediating the Effects of Fibrates and Fatty Acids on Gene Expression, J. Lipid Res. 37, 907–925.

    PubMed  CAS  Google Scholar 

  3. Schoonjans, K., Martin, G., Staels, B., and Auwerx, J. (1997) Peroxisome Proliferator-Activated Receptors, Orphans with Ligands and Functions, Curr. Opin. Lipidol. 8, 159–166.

    Article  PubMed  CAS  Google Scholar 

  4. Sørensen, H.N., Treuter, E., and Gustafsson, J.Å. (1997) Regulation of Peroxisome Proliferiator-Activated Receptors, Vitam. Horm. 54, 121–166.

    Article  Google Scholar 

  5. Isseman, I., and Green, S. (1990) Activation of a Member of the Steroid Hormone Receptor Superfamily by Peroxisome Proliferators, Nature 347, 645–650.

    Article  Google Scholar 

  6. Dreyer, C., Krey, G., Keller, H., Givel, F., Helftenbein, G., and Wahli, W. (1992) Control of the Peroxisomal β-Oxidation Pathway by a Novel Family of Nuclear Hormone Receptors, Cell 68, 879–887.

    Article  PubMed  CAS  Google Scholar 

  7. Kliewer, S.A., Forman, B.M., Blumberg, B., Ong, E.S., Borgmeyer, U., Mangelsdorf, D.J., Umesono, K., and Evans, R.M. (1994) Differential Expression and Activation of a Murine Peroxisomal Proliferator-Activated Receptor, Proc. Natl. Acad. Sci. USA 91, 7355–7359.

    Article  PubMed  CAS  Google Scholar 

  8. Braissant, O., Foufelle, F., Scotto, C., Dauca, M., and Wahli, W. (1996) Differential Expression of Peroxisome-Proliferator Activated Receptors (PPARs): Tissue Distribution of PPAR-α,-β, and-γ in the Adult Rat, Endocrinology 137, 354–366.

    Article  PubMed  CAS  Google Scholar 

  9. Keller, H., Dreyer, C., Medin, J., Mahoudi, A., Ozato, K., and Wahli, W. (1993) Fatty Acids and Retinoids Control Lipid Metabolism Through Activation of Peroxisome Proliferator-Activated Receptor-Retinoid X Receptor Heterodimers, Proc. Natl. Acad. Sci. USA 90, 2160–2164.

    Article  PubMed  CAS  Google Scholar 

  10. Kliewer, S.A., Umesono, K., Noonan, D.J., Heyman, R.A., and Evans, R.M. (1992) Convergence of 9-cis Retinoic Acid and Peroxisome Proliferator Signalling Pathways Through Heterodimer Formation of Their Receptors, Nature 358, 771–774.

    Article  PubMed  CAS  Google Scholar 

  11. Forman, B., Chen, J., and Evans, R.M. (1997) Hypolipidemic Drugs, Polyunsaturated Fatty Acids, and Eicosanoids Are Ligands for Peroxisome Proliferator-Activated Receptors α and δ, Proc. Natl. Acad. Sci. USA 94, 4312–4317.

    Article  PubMed  CAS  Google Scholar 

  12. Krey, G., Braissant, O., L'Horset, F., Kalkhoven, E., Perroud, M., Parker, M.G., and Wahli, W. (1997) Fatty Acids, Eicosanoids, and Hypolipidemic Agents Identified as Ligands of Peroxisome Proliferator-Activated Receptors by Coactivator-Dependent Receptor Ligand Assay, Mol. Endocrinol. 11, 779–791.

    Article  PubMed  CAS  Google Scholar 

  13. Forman, B.M., Chen, J., and Evans, R.M. (1996) The Peroxisome Proliferator-Activated Receptors: Ligands and Activators, Ann. N.Y. Acad. Sci. 804, 266–275.

    PubMed  CAS  Google Scholar 

  14. Xu, H.E., Lambert, M.H., Montana, V.G., Parks, D.J., Blanchard, S.G., Brown, P.J., Sternbach, D.D., Lehmann, J.M., Wisely, G.B., Willson, T.M., et al. (1999) Molecular Recognition of Fatty Acids by Peroxisome Proliferator-Activated Receptors, Mol. Cell 3, 397–403.

    Article  PubMed  CAS  Google Scholar 

  15. Zomer, A.W.M., van der Burg, B., Jansen, G.A., Wanders, R.J.A., Poll-The, B.T., and van der Saag, P.T. (2000) Pristanic Acid and Phytanic Acid: Naturally Occurring Ligands for the Nuclear Receptor Peroxisome Proliferater-Activated Receptor α, J. Lipid Res. 41, 1801–1807.

    PubMed  CAS  Google Scholar 

  16. Kliewer, S.A., Sundseth, S.S., Jones, S.A., Brown, P.J., Wisely, G.B., Koble, C.S., Devchand, P., Wahli, W., Willson, T.M., Lenhard, J.M., and Lehmann, J.M. (1997) Fatty Acids and Eicosanoids Regulate Gene Expression Through Direct Interactions with Peroxisome Proliferator-Activated Receptors α and γ, Proc. Natl. Acad. Sci. USA 94, 4318–4323.

    Article  PubMed  CAS  Google Scholar 

  17. Oliver, W.R., Shenk, J.L., Snaith, M.R., Russell, C.S., Plunket, K.D., Bodkin, N.L., Lewis, M.C., Winegar, D.A., Sznaidman, M.L., Lambert, M.H., et al. (2001) A Selective Peroxisome Prolierator-Activated Receptor Agonist Promotes Reverse Cholesterol Transport, Proc. Natl. Acad. Sci. USA 98, 5306–5311.

    Article  PubMed  CAS  Google Scholar 

  18. Forman, B.M., Tontonoz, P., Chen, J., Brun, R.P., Spiegelman, B.M., and Evans, R.M. (1995) 15-Deoxy-Δ12,14-Prostaglandin J 2 Is a Lignad for the Adipocyte Determination Factor PPARγ, Cell 83, 803–812.

    Article  PubMed  CAS  Google Scholar 

  19. Kliewer, S.A., Lenhard, J.M., Willson, T.M., Patel, I., Morris, D.C., and Lehmann, J.M. (1995) A Prostaglandin J2 Metabolite Binds Peroxisome Proliferator-Activated Receptor γ and Promotes Adipocyte Differentiation, Cell 83, 813–819.

    Article  PubMed  CAS  Google Scholar 

  20. Lehmann, J.M., Moore, L.B., Smith-Oliver, T.A., Wilkinson, W.O., Willson, T.M., and Kliewer, S.A. (1995) An Antidiabetic Thiazolidinedione Is a High Affinity Ligand for Peroxisome Proliferator-Activated Receptor γ (PPARγ), J. Biol. Chem. 270, 12953–12956.

    Article  PubMed  CAS  Google Scholar 

  21. Bergseth, S., and Bremer, J. (1990) Alkylthioacetic Acids (3-thia fatty acids) Are Metabolized and Excreted As Shortened Dicarboxylic-Acids in vivo, Biochim. Biophys. Acta 1044, 237–242.

    PubMed  CAS  Google Scholar 

  22. Hvattum, E., Bergseth, S., Pedersen, C.N., Bremer, J., Aarsland, A., and Berge, RK. (1991) Microsomal Oxidation of Dodecylthioacetic Acid (a 3-thia fatty acid) in Rat Liver, Biochem. Pharmacol. 41, 945–953.

    Article  PubMed  CAS  Google Scholar 

  23. Berge, RK., Aarsland, A., Kryvi, H., Bremer, J., and Aarsaether, N. (1989) Alkylthioacetic Acid (3-thia fatty acids)—A New Group of Non-β-oxidizable, Peroxisome-Inducing Fatty Acid Analogues. I. A Study on the Structural Requirements for Proliferation of Peroxisomes and Mitochondria in Rat Liver, Biochim. Biophys. Acta 1004, 345–356.

    PubMed  CAS  Google Scholar 

  24. Norrheim, L., Sørensen, H., Gautvik, K.M., Bremer, J., and Spydevold, Ø. (1990) Synergistic Actions of Tetradecylthioacetic Acid (TTA) and Dexamethasone on Induction of the Peroxisomal β-Oxidation and on Growth Inhibition of Morris Hepatoma Cells. Both Effects Are Counteracted by Insulin, Biochim. Biophys. Acta 1051, 319–323.

    Article  PubMed  CAS  Google Scholar 

  25. Spydevold, O., and Bremer, J. (1989) Induction of Peroxisomal β-Oxidation in 7800 C1 Morris Hepatoma Cells in Steady State by Fatty Acids and Fatty Acid Analogues, Biochim. Biophys. Acta 1003, 72–79.

    PubMed  CAS  Google Scholar 

  26. Larsen, L.N., Bremer, J., Flock, S., and Skattebol, L. (1998) α- and β-Alkyl-Substituted Eicosapentaenoic Acids: Incorporation into Phospholipids and Effects on Prostaglandin H Synthase and 5-Lipoxygenase, Biochem. Pharmacol. 55, 405–411.

    Article  PubMed  CAS  Google Scholar 

  27. Madsen, L., Guerre-Millo, M., Flindt, E.N., Berge, K., Tronstad, K.J., Bergene, E., Sebokova, E., Rustan, A.C., Jensen, J., Mandrup, S., et al. (2002) Tetradecylthioacetic Acid Prevents High Fat Diet Induced Adiposity and Insulin Resistance, J. Lipid Res. 43, 742–750.

    PubMed  CAS  Google Scholar 

  28. Jansen, G.A., Ofman, R., Ferdinandusse, S., Ijlst, L., Muijsers, A.O., Skjeldal, O.H., Stokke, O., Jakobs, C., Besley, G.T., Wraith, J.E., and Wanders, R.J. (1997) Refsum Disease Is Caused by Mutations in the Phytanoyl-CoA Hydroxylase Gene, Nat. Genet. 17, 190–193.

    Article  PubMed  CAS  Google Scholar 

  29. Wanders, R.J.A., and Tager, J.M. (1998) Lipid Metabolism in Peroxisomes in Relation to Human Disease, Mol. Aspects Med. 19, 69–154.

    PubMed  CAS  Google Scholar 

  30. Chin, S.F., Liu, W., Storkson, J.M., Ha, Y.L., and Pariza, M.W. (1992) Dietary Sources of Conjugated Dienoic Isomers of Linoleic Acid, a Newly Recognized Class of Anticarcinogens, J. Food Compos. Anal. 5, 185–197.

    Article  CAS  Google Scholar 

  31. Park, Y., Storkson, J.M., Albright, K.J., Liu, W., and Pariza, M.W. (1999) Evidence That the trans-10,cis-12 Isomer of Conjugated Linoleic Acid Induces Body Composition Changes in Mice, Lipids 34, 235–241.

    Article  PubMed  CAS  Google Scholar 

  32. Granlund, L., Juvet, L.K., Pedersen, J.I., and Nebb, H.I. (2003) Trans 10,cis 12-Conjugated Linoleic Acid Prevents Triacylglycerol Accumulation in Adipocytes by Acting as a PPARγ Modulator, J. Lipid Res. 44, 1441–1452.

    Article  PubMed  CAS  Google Scholar 

  33. Granlund, L., Larsen, L.N., Nebb., H.I., and Pedersen, J.I., Effects of Structural Changes of Fatty Acids on Lipid Accumulation in Adipocytes and Primary Hepatocytes, Biochim. Biophys. Acta, in press.

  34. Jie, M.S.F.L., Pasha, M.K., and Alam, M.S. (1997) Synthesis and Nuclear Magnetic Resonance Properties of All Geometrical Isomers of Conjugated Linoleic Acids, Lipids 32, 1041–1044.

    Article  PubMed  CAS  Google Scholar 

  35. Lie Ken Jie, M.S.F., Lam, C.N.W., Ho, J.C.M., and Lau, M.M.L. (2003) Epoxidation of a Conjugated Linoleic Acid Isomer, Eur. J. Lipid Sci. Technol. 105, 391–396.

    Article  CAS  Google Scholar 

  36. Lie Ken Jie, M.S.F., Pasha, M.K., and Alam, M.S. (1999) Nuclear Magnetic Resonance Spectroscopic Analysis of Conjugated Linoleic Acid Esters, in Advances in Conjugated Linoleic Acid Research, Volume 1 (Yurawecz, M.P., Mossoba, M.M., Kramer, J.K.G., Pariza, M.W., and Nelson, G.J., eds.) pp. 152–163, AOCS Press, Champaign.

    Google Scholar 

  37. Chen, C.-A., and Sih, C.J. (1998) Chemoenzymatic Synthesis of Conjugated Linoleic Acid, J. Org. Chem. 63, 9620–9621.

    Article  CAS  Google Scholar 

  38. Chen, C.A., Lu, W., and Sih, C.J. (1999) Synthesis of 9Z,11E-Octadecadienoic and 10E,12Z-Octadecadienoic Acids, the Major Components of Conjugated Linoleic Acid, Lipids 34, 879–884.

    Article  PubMed  CAS  Google Scholar 

  39. Richardson, U.I., Snodgrass, P.J., Nuzum, C.T., and Tashjian, A.H., Jr. (1974) Establishment of a Clonal Strain of Hepatoma Cells Which Maintain in Culture the Five Enzymes of the Urea Cycle, J. Cell. Physiol. 83, 141–149.

    Article  PubMed  CAS  Google Scholar 

  40. Steineger, H.H., Sørensen, H.N., Tugwood, J.D., Skrede, S., Spydevold, O., and Gautvik, K.M. (1994) Dexamethasone and Insulin Demonstrate Marked and Opposite Regulation of the Steady-State mRNA Level of the Peroxisomal Proliferator-Activated Receptor (PPAR) in Hepatic Cells. Hormonal Modulation of Fatty-Acid-Induced Transcription, Eur. J. Biochem. 225, 967–974.

    Article  PubMed  CAS  Google Scholar 

  41. Sørensen, H.N., Hvattum, E., Paulssen, E.J., Gautvik, K.M., Bremer, J., and Spydevold, O. (1993) Induction of Peroxisomal Acyl-CoA Oxidase by 3-Thia Fatty Acid, in Hepatoma Cells and Hepatocytes in Culture Is Modified by Dexamethasone and Insulin, Biochim. Biophys. Acta 1171, 263–271.

    PubMed  Google Scholar 

  42. Sørensen, H.N., Gautvik, K.M., Bremer, J., and Spydevold, O. (1992) Induction of the Three Peroxisomal β-Oxidation Enzymes Is Synergistically Regulated by Dexamethasone and Fatty Acids, and Counteracted by Insulin in Morris 7800C1 Hepatoma Cells in Culture, Eur. J. Biochem. 208, 705–711.

    Article  PubMed  Google Scholar 

  43. Wu, P., Skrede, S., Hvattum, E., and Bremer, J. (1993) Substrate and Hormone Regulation of Palmitoyl-CoA Synthetase in 7800 C1Morris Hepatoma Cells and Cultured Rat Hepatocytes, Biochim. Biophys. Acta 1170, 118–124.

    PubMed  CAS  Google Scholar 

  44. Lewis, D.F.V., Jacobs, M.N., Dickins, M., and Lake, B.G. (2002) Molecular Modelling of the Peroxisome Proliferator-Activated Receptor α (PPARα) from Human, Rat and Mouse, Based on Homology with the Human PPARγ Crystal Structure, Toxicol. in Vitro 16, 275–280.

    Article  PubMed  CAS  Google Scholar 

  45. Berge, R.K., Aarsland, A., Kryvi, H., Bremer, J., and Aarsaether, N. (1989) Alkylthio Acetic Acids (3-thia fatty acids)—A New Group of Non-β-oxidizable Peroxosome-Inducing Fatty Acid Analogues—II. Dose-Response Studies on Hepatic Peroxisomal- and Mitochondrial Changes and Long-Chain Fatty Acid Metabolizing Enzymes in Rats, Biochem. Pharmacol. 38, 3969–3979.

    Article  PubMed  CAS  Google Scholar 

  46. Frøyland, L., Madsen, L., Sjursen, W., Garras, A., Lie, Ø., Songstad, J., Rustan, A.C., and Berge, R.K. (1997) Effect of 3-Thia Fatty Acids on the Lipid Composition of Rat Liver, Lipoproteins, and Heart, J. Lipid Res. 38, 1522–1534.

    PubMed  Google Scholar 

  47. Madsen, L., Garras, A., Asins, G., Serra, D., Hegardt, F.G., and Berge, R.K. (1999) Mitochondrial 3-Hydroxy-3-methylglutaryl Conenzyme A Synthase and Carnitine Palmitoyltransferase II as Potential Control Sites for Ketogenesis During Mitochondrion and Peroxisome Proliferation, Biochem. Pharmacol. 57, 1011–1019.

    Article  PubMed  CAS  Google Scholar 

  48. Cronet, P., Petersen, J.F.W., Folmer, R., Blomberg, N., Sjøblom, K., Karlsson, U., Lindstedt, E., and Bamberg, K. (2001) Structure of the PPARα and-γ Ligand Binding Domain in Complex with AZ 242: Ligand Selectivity and Agonist Activation in the PPAR Family, Structure 9, 699–706.

    Article  PubMed  CAS  Google Scholar 

  49. Lewis, D.F.V., and Lake, B.G. (1998) Molecular Modelling of the Rat Peroxisome Proliferator-Activated Receptor-α (rPPARα) by Homology with Human Retinoic Acid X Receptor α (hRXRα) and Investigation of Ligand Binding Interactions: QSARs, Toxicol, in Vitro 12, 619–632.

    Article  CAS  Google Scholar 

  50. Vaagenes, H., Madsen, L., Dyrøy, E., Elholm, M., Stray-Pedersen, A., Frøyland, L., Lie, Ø., and Berge, R.K. (1999) Methylated Eicosapentaenoic Acid and Tetradecylthioacetic Acid: Effects on Fatty Acid Metabolism, Biochem. Pharmacol. 58, 1133–1143.

    Article  PubMed  CAS  Google Scholar 

  51. Aarsland, A., Aarsaether, N., Bremer, J., and Berge, R.K. (1989) Alkylthioacetic Acids (3-thia fatty acids) as Non-β-oxidizable Fatty Acid Analogues: A New Group of Hypolipidemic Drugs. III. Dissociation of Cholesterol- and Triglyceride-Lowering Effects and The Induction of Peroxisomal β-Oxidation, J. Lipid Res. 30, 1711–1718.

    PubMed  CAS  Google Scholar 

  52. Asiedu, D.K., Skorve, J., Willumsen, N., Demoz, A., and Berge, R.K. (1993) Early Effects on Mitochondrial and Peroxisomal β-Oxidation by the Hypolipidemic 3-Thia Fatty Acids in Rat Livers, Biochim. Biophys. Acta. 1166, 73–76.

    PubMed  CAS  Google Scholar 

  53. Skorve, J., Asiedu, D., Rustan, A.C., Drevon, C.A., al-Shurbaji, A., and Berge, R.K. (1990) Regulation of Fatty Acid Oxidation and Triglyceride and Phospholipid Metabolism by Hypolipidemic Sulfur-Substituted Fatty Acid Analogues, J. Lipid Res. 31 1627–1635.

    PubMed  CAS  Google Scholar 

  54. Willumsen, N., Vaagenes, H., Holmsen, H., and Berge, R.K. (1998) On the Effect of 2-Deuterium- and 2-Methyl-eicosapentaenoic Acid Derivatives on Triglycerides, Peroxisomal β-Oxidation and Platelet Aggregation in Rats, Biochim. Biophys. Acta. 1369, 193–203.

    Article  PubMed  CAS  Google Scholar 

  55. Wolfrum, C., Ellinghaus, P., Fobker, M., Seedorf, U., Assmann, G., Børchers, T., and Spener, F. (1999) Phytanic Acid Is Ligand and Transcriptional Activator of Murine Liver Fatty Acid Binding Protein, J. Lipid Res. 40, 708–714.

    PubMed  CAS  Google Scholar 

  56. Norris, A.W., and Spector, A.A. (2002) Very Long Chain n−3 and n−6 Polyunsaturated Fatty Acids Bind Strongly to Liver Fatty Acid-Binding Protein, J. Lipid Res. 43, 646–653.

    PubMed  CAS  Google Scholar 

  57. Huang, H., Starodub, O., McIntosh, A., Kier, A.B., and Schroeder, F. (2002) Liver Fatty Acid-Binding Protein Targets Fatty Acids to the Nucleus. Real Time Confocal and Multiphoton Fluorescence Imaging in Living Cells, J. Biol. Chem. 277, 29139–29151.

    Article  PubMed  CAS  Google Scholar 

  58. Wolfrum, C., Bormann, C.M., Borchers, T., and Spener, F. (2001) Fatty Acids and Hypolipidemic Drugs Regulate Peroxisome Proliferator-Activated Receptors α- and γ-Mediated Gene Expression via Liver Fatty Acid Binding Protein: A Signaling Path to the Nucleus, Proc. Natl. Acad. Sci. USA 98, 2323–2328.

    Article  PubMed  CAS  Google Scholar 

  59. Jia, Y., Qi, C., Kashireddy, P. Surapureddi, S., Zhu, Y., Rao, M.S., Roith, D., Chambon, P., Gonzalez, F.J., and Reddi, J.K. (2004) Transcription Coactivator PBP, the Peroxisome Proliferator-Activated Receptor (PPAR)-Binding Protein, Is Required for PPARα-Regulated Gene Expression in Liver, J. Biol. Chem. 279, 24427–24434.

    Article  PubMed  CAS  Google Scholar 

  60. Stanley, T.B. Leesnitzer, L.M., Montana, V.G., Galardi, C.M., Lambert, M.H., Holt, J.A., Xy, H.E., Moore, L.B., Blanchard, S.G., and Stimmel, J.B. (2003) Subtype Specific Effects of Peroxisome Proliferator-Activated Receptor Ligands on Corepressor Affinity, Biochemistry 42, 9278–9287.

    Article  PubMed  CAS  Google Scholar 

  61. Singh, H., Beckman, K., and Poulos, A. (1994) Peroxisomal β-Oxidation of Branched Chain Fatty Acids in Rat Liver. Evidence That Carnitine Palmitoyltransferase I Prevents Transport of Branched Chain Fatty Acids into Mitochondria, J. Biol. Chem. 269, 9514–9520.

    PubMed  CAS  Google Scholar 

  62. Van Velhoven, P.P., Vanhoven, G., Vanhoutte, F., Dacremont, G., Parmentier, G., Eyssen, H.J., and Mannaerts, G.P. (1991) Identification and Purification of a Peroxisomal Branched Chain Fatty Acyl-Coa Oxidase, J. Biol. Chem. 266, 24676–24683.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laila N. Larsen.

About this article

Cite this article

Larsen, L.N., Granlund, L., Holmeide, A.K. et al. Sulfur-substituted and α-methylated fatty acids as peroxisome proliferator-activated receptor activators. Lipids 40, 49–57 (2005). https://doi.org/10.1007/s11745-005-1359-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-005-1359-3

Keywords

Navigation