Skip to main content
Log in

β-oxidation capacity of red and white muscle and liver in Atlantic salmon (Salmo salar L.)—Effects of increasing dietary rapeseed oil and olive oil to replace capelin oil

  • Published:
Lipids

Abstract

Post-smolt Atlantic salmon (Salmo salar) were fed six diets in which capelin oil was replaced with 0, 25, 50, 75, or 100% rapeseed oil (RO; low-erucic acid) or 50% olive oil (OO). The experimental diets were fed to single groups of Atlantic salmon for 42 wk, whereas the 100% capelin oil (0% RO) diet was fed in duplicate. The β-oxidation capacity of palmitoyl-CoA was determined, using a method optimized for salmon tissues, at the start of the experiment, after 21 wk (October), and after 42 wk (March) in red and white muscle and in liver. Red muscle showed the highest specific β-oxidation capacity, but when expressed as total β-oxidation capacity for the whole tissue, white muscle was the most important tissue for the β-oxidation of FA. From the initial to the final sampling, the β-oxidation capacity of white muscle increased significantly, whereas the β-oxidation capacity in liver decreased significantly. After 22 wk, white muscle exhibited an increased β-oxidation capacity when the dietary RO content was raised from 25 to 75%, with similar effects in red muscle and liver after 42 wk of feeding. The present results also show that the β-oxidation capacity increased with an increase in fish size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

dl-DTT:

dl-dithiothreitol

E-fraction:

postnuclear supernatant

FAF-BSA:

fatty acid-free bovine serum albumin

MUFA:

monounsaturated FA

OO:

olive oil

RO:

rapeseed oil

References

  1. Sanderson, P., Finnegan, Y.E., Williams, C.M., Calder, P.C., Burdge, G.C., Wootton, S.A., Griffin, B.A., Millward, D.J., Pegge, N.C., and Bemelmans, W.J.E. (2002) UK Food Standards Agency α-Linolenic Acid Workshop Report, Br. J. Nutr. 88, 573–579.

    Article  PubMed  CAS  Google Scholar 

  2. Uauy, R., and Valenzuela, A. (2000) Marine Oils: The Health Benefits of n−3 Fatty Acids, Nutrition 16, 680–684.

    Article  PubMed  CAS  Google Scholar 

  3. Mannaerts, G.P., Debeer, L.J., Thomas, J., and De Schepper, P.J. (1979) Mitochondrial and Peroxisomal Fatty Acid Oxidation in Liver Homogenates and Isolated Hepatocytes from Control and Clofibrate-Treated Rats, J. Biol. Chem. 11, 4585–4595.

    Google Scholar 

  4. Small, G., and Connock, M. (1981) Palmitoyl-CoA Oxidase in Goldfish (Carassius auratus): Detection in Several Tissues and Subcellular Location in Intestinal Peroxisomes, Comp. Biochem. Physiol. 68B, 151–153.

    CAS  Google Scholar 

  5. Foerster, E.C., Fährenkemper, F., Rabe, U., Graf, P., and Sies, H. (1981) Peroxisomal Fatty Acid Oxidation as Detected by H2O2 Production in Intact Perfused Rat Liver, Biochem. J. 196, 705–712.

    PubMed  CAS  Google Scholar 

  6. Gurr, M.I., and Harwood, J.L. (1991) Lipid biochemistry, 4th edn., pp. 79–80, Chapman & Hall, London.

    Google Scholar 

  7. Reddy, J.K., and Mannaerts, G.P. (1994) Peroxisomal Lipid Metabolism, Annu. Rev. Nutr. 14, 343–370.

    Article  PubMed  CAS  Google Scholar 

  8. Crockett, E.L., and Sidell, B.D. (1993) Substrate Selectivities Differ for Hepatic Mitochondrial and Peroxisomal β-Oxidation in an Antarctic Fish, Notothenia gibberifrons, Biochem. J. 289, 427–433.

    CAS  Google Scholar 

  9. Crockett, E.L., and Sidell, B.D. (1993) Peroxisomal β-Oxidation Is a Significant Pathway for Catabolism of Fatty Acids in a Marine Teleost, Am. J. Physiol. 264, R1004-R1009.

    PubMed  CAS  Google Scholar 

  10. Frøyland, L., Lie, Ø., and Berge, R.K. (2000) Mitochondrial and Peroxisomal β-Oxidation Capacities in Various Tissues from Atlantic Salmon Salmo salar, Aquacult. Nutr. 6, 85–89.

    Article  Google Scholar 

  11. Frøyland, L., Madsen, L., Eckhoff, K.M., Lie, Ø., and Berge, R.K. (1998) Carnitine Palmitoyltransferase I, Carnitine Palmitoyltransferase II, and Acyl-CoA Oxidase Activities in Atlantic Salmon (Salmo salar), Lipids 33, 923–930.

    Article  PubMed  Google Scholar 

  12. Torstensen, B.E., Lie, Ø., and Frøyland, L. (2000) Lipid Metabolism and Tissue Composition in Atlantic Salmon (Salmo salar L.)—Effects of Capelin Oil, Palm Oil, and Oleic Acid-Enriched Sunflower Oil as Dietary Lipid Sources, Lipids 35, 653–663.

    Article  PubMed  CAS  Google Scholar 

  13. Nordgarden, U., Torstensen, B.E., Frøyland, L., Hansen, T., and Hemre, G.I. (2003) Seasonally Changing Metabolism in Atlantic Salmon (Salmo salar L.)II—β-Oxidation Capacity and Fatty Acid Composition in Muscle Tissues and Plasma Lipoproteins, Aquacult. Nutr. 9, 295–303.

    Article  CAS  Google Scholar 

  14. Guderley, H., St Pierre, J., Couture, P., and Hulbert, A.J. (1997) Plasticity of the Properties of Mitochondria from Rainbow Trout Red Muscle with Seasonal Acclimatization, Fish. Physiol. Biochem. 16, 531–541.

    Article  CAS  Google Scholar 

  15. Thibault, M., Blier, P.U., and Guderley, H. (1997) Seasonal Variation of Muscle Metabolic Organization in Rainbow Trout (Oncorhynchus mykiss), Fish. Physiol. Biochem. 16, 139–155.

    Article  CAS  Google Scholar 

  16. Guderley, H. (2004) Metabolic Responses to Low Temperature in Fish Muscle, Biol. Rev. 79, 409–427.

    Article  PubMed  Google Scholar 

  17. Kiessling, A., Kiessling, K.H., Storebakken, T., and Asgard, T. (1991) Changes in the Structure and Function of the Epaxial Muscle of Rainbow Trout (Oncorhynchus mykiss) in Relation to Ration and Age II. Activity of Key Enzymes in Energy Metabolism, Aquaculture 93, 357–372.

    Article  CAS  Google Scholar 

  18. Atherton, W.D., and Aitken, A. (1970) Growth, Nitrogen Metabolism and Fat Metabolism in Salmo gairdneri Rich., Comp Biochem. Physiol. 36, 719–747.

    Article  CAS  Google Scholar 

  19. Torstensen, B.E., Frøyland, L., Ørnsrud, R., and Lie, Ø. (2004) Tailoring of a Cardioprotective Muscle Fatty Acid Composition of Atlantic Salmon (Salmo salar) Fed Vegetable Oil, Food Chem. 87, 567–580.

    Article  CAS  Google Scholar 

  20. Lie, Ø., Lied, E., and Lambertsen, G. (1986) Liver Retention of Fat and of Fatty Acids in Cod (Gadus morhua) Fed Different Oils, Aquaculture 59, 187–196.

    Article  CAS  Google Scholar 

  21. Torstensen, B.E., Frøyland, L., and Lie, Ø. (2004) Replacing Dietary Fish Oil with Increasing Levels of Rapeseed Oil and Olive Oil—Effects on Atlantic Salmon (Salmo salar L.) Tissue and Lipoprotein Lipid Composition and Lipogenic Enzyme Activities, Aquacult. Nutr. 10, 175–192.

    Article  CAS  Google Scholar 

  22. Hamre, K., and Lie, Ø. (1995) α-Tocopherol Levels in Different Organs of Atlantic Salmon (Salmo salar L.)—Effect of Smoltification, Dietary Levels of n−3 Polyunsaturated Fatty Acids and Vitamin E, Comp. Biochem. Physiol. 111A, 547–554.

    Article  CAS  Google Scholar 

  23. Frøyland, L., Asiedu, D.K., Vaagenes, H., Garras, A., Lie, Ø., Totland, G.K., and Berge, R.K. (1995) Tetradecylthioacetic Acid Incorporated into Very Low Density Lipoprotein: Changes in the Fatty Acid Composition and Reduced Plasma Lipids in Cholesterol-Fed Hamsters, J. Lipid Res. 36, 2529–2540.

    PubMed  Google Scholar 

  24. Oppedal, F. (2002) Influences of Artificial Light on Atlantic Salmon (Salmo salar L.) in Seawater, Dr.Scient. Thesis, University of Bergen, Bergen, Norway, pp. 1–61.

    Google Scholar 

  25. Bone, Q. (1966) On Function of 2 Types of Myotomal Muscle Fibre in Elasmobranch Fish, J. Mar. Biol. Assoc. UK 46, 321–348.

    Article  Google Scholar 

  26. Wokoma, A., and Johnston, I.A. (1981) Lactate Production at High Sustainable Cruising Speeds in Rainbow Trout (Salmo gairdneri Richardson), J. Exp. Biol. 90, 361–364.

    CAS  Google Scholar 

  27. Veerkamp, J.H., van Moerkerk, T.B., Glatz, J.F.C., Zuurveld, J.G.E.M., Jacobs, A.E.M., and Wagenmakers, A.J.M. (1986) 14CO2 Production Is No Adequate Measure of [14C]Fatty Acid Oxidation, Biochem. Med. Metab. Biol. 35, 248–259.

    Article  PubMed  CAS  Google Scholar 

  28. Bell, J.G., Tocher, D.R., Henderson, R.J., Dick., J.R., and Crampton, V.O. (2003) Altered Fatty Acid Compositions in Atlantic Salmon (Salmo salar) Fed Diets Containing Linseed and Rapeseed Oils Can Be Partially Restored by a Subsequent Fish Oil Finishing Diet, J. Nutr. 133, 2793–2801.

    PubMed  CAS  Google Scholar 

  29. Bell, J.G., Henderson, R.J., Tocher, D.R., McGhee, F., Dick, J.R., Porter, A., Smullen, R.P., and Sargent, J.R. (2002) Substituting Fish Oil with Crude Palm Oil in the Diet of Atlantic Salmon (Salmo salar) Affects Muscle Fatty Acid Composition and Hepatic Fatty Acid Metabolism, J. Nutr. 132, 222–230.

    PubMed  CAS  Google Scholar 

  30. Bell, J.G., McEvoy, J., Tocher, D.R., McGhee, F., Campbell, P.J., and Sargent, J.R. (2001) Replacement of Fish Oil with Rapeseed Oil in Diets of Atlantic Salmon (Salmo salar) Affects Tissue Lipid Compositions and Hepatocyte Fatty Acid Metabolism, J. Nutr. 131, 1535–1543.

    PubMed  CAS  Google Scholar 

  31. Waagbø, R., Sandnes, K., Sandvin, A., and Lie, Ø. (1991) Feeding Three Levels of n−3 Polyunsaturated Fatty Acids at Two Levels of Vitamin E to Atlantic Salmon (Salmo salar). Growth and Chemical Composition, Fisk. Dir. Skr., Ser. Ernœring 4, 51–63.

    Google Scholar 

  32. Lie, Ø., Waagbø, R., and Sandnes, K. (1988) Growth and Chemical Composition of Adult Atlantic Salmon (Salmo salar) Fed Dry and Silage-Based Diets, Aquaculture 69, 343–353.

    Article  Google Scholar 

  33. Bell, G.J., Henderson, J.R., Tocher, D.R., and Sargent, J.R. (2004) Replacement of Dietary Fish Oil with Increasing Levels of Linseed Oil: Modification of Flesh Fatty Acid Composition in Atlantic Salmon (Salmo salar) Using a Fish Oil Finishing Diet, Lipids 39, 223–232.

    PubMed  CAS  Google Scholar 

  34. Torstensen, B. (2000) Transport and Metabolism of Lipids in Atlantic Salmon Salmo salar L., Dr.Scient. Thesis, University of Bergen, Bergen, Norway, pp. 3–43.

    Google Scholar 

  35. Henderson, R.J., and Tocher, D.R. (1987) The Lipid Composition and Biochemistry of Fresh water Fish, Prog. Lipid. Res. 26, 281–347.

    Article  PubMed  CAS  Google Scholar 

  36. Kiessling, A., Storebakken, T., Asgard, T., and Kiessling, K.H. (1991) Changes in the Structure and Function of the Epaxial Muscle of Rainbow Trout (Oncorhynchus mykiss) in Relation to Ration and Age I. Growth Dynamics, Aquaculture 93, 335–356.

    Article  Google Scholar 

  37. Kiessling, K.H., and Kiessling, A. (1993) Selective Utilization of Fatty Acids in Rainbow Trout (Oncorhynchus mykiss Walbaum) Red Muscle Mitochondria, Can. J. Zool. 71, 248–251.

    CAS  Google Scholar 

  38. Egginton, S. (1996) Effect of Temperature on the Optimal Substrate for β-Oxidation, J. Fish. Biol. 49, 753–758.

    CAS  Google Scholar 

  39. Henderson, R.J., and Sargent, J.R. (1985) Chain-Length Specificities of Mitochondrial and Peroxisomal β-Oxidation of Fatty Acids in Livers of Rainbow Trout (Salmo gairdneri), Comp. Biochem. Physiol. 82B, 79–85.

    CAS  Google Scholar 

  40. Vegusdal, A., Østbye, T.K., Tran, T.N., Gjøen, T., and Ruyter, B. (2004) β-Oxidation, Esterification, and Secretion of Radiolabeled Fatty Acids in Cultivated Atlantic Salmon Skeletal Muscle Cells, Lipids 39, 649–658.

    PubMed  CAS  Google Scholar 

  41. Henderson, R.J., and Sargent, J.R. (1981) Lipid Biosynthesis in Rainbow Trout, Salmo gairdnerii, Fed Diets of Differing Lipid Content, Comp. Biochem. Physiol. 69C, 31–37.

    CAS  Google Scholar 

  42. Torstensen, B.E., and Stubhaug, I. (2004) β-Oxidation of 18∶3n−3 in Atlantic Salmon (Salmo salar L.) Hepatocytes Treated with Different Fatty Acids, Lipids 39, 153–160.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingunn Stubhaug.

About this article

Cite this article

Stubhaug, I., Frøyland, L. & Torstensen, B.E. β-oxidation capacity of red and white muscle and liver in Atlantic salmon (Salmo salar L.)—Effects of increasing dietary rapeseed oil and olive oil to replace capelin oil. Lipids 40, 39–47 (2005). https://doi.org/10.1007/s11745-005-1358-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-005-1358-4

Keywords

Navigation