Skip to main content
Log in

Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Sterols are regulators of both biological function and structure. The role of cholesterol in promoting the structural and mechanical stability of membranes is widely recognized. Knowledge of how the related sterols, lanosterol and ergosterol, affect membrane mechanical properties is sparse. This paper presents a comprehensive comparison of the effects of cholesterol, lanosterol, and ergosterol upon the bending elastic properties of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine giant unilamellar vesicles. Measurements are made using vesicle fluctuation analysis, a nonintrusive technique that we have recently improved for determining membrane bending rigidity. Giving a detailed account of the vesicle fluctuation analysis technique, we describe how the gravitational stabilization of the vesicles enhances image contrast, vesicle yield, and the quality of data. Implications of gravity on vesicle behaviour are also discussed. These recent modifications render vesicle fluctuation analysis an efficient and accurate method for determining how cholesterol, lanosterol, and ergosterol increase membrane bending rigidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4
Fig. 5
Fig. 6a, b
Fig. 7

Similar content being viewed by others

Notes

  1. The optical resolution of a membrane displacement is of the order 100 nm at a 100-fold magnification level.

  2. R1 and R2 are the radii of curvature in the principal directions obtained from the Weingarten matrix.

  3. The notation Σ lm will be used as an abbreviation of \( {\sum\nolimits_{l = 2}^{l_{{{\text{cut}}}} } {{\sum\nolimits_{m = - 1}^l {} }} } \) where lcut is the upper mode cutoff.

  4. The polar representation does not allow for overhangs, which results in the rejection of some contours. At this level it is necessary to make sure that all contours have the same direction of rotation in their polar representation.

Abbreviations

DMPC:

Dimyristoylphosphocholine

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

VFA:

Vesicle fluctuation analysis

GUV:

Giant unilamellar vesicle

TLC:

Thin layer chromatography

EPR:

Electron paramagnetic resonance

NMR:

Nuclear magnetic resonance

References

  • Almeida PFF, Vaz WLC, Thompson TE (1992) Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers. Biochemistry 31:6739–6747

    CAS  PubMed  Google Scholar 

  • Angelova MI, Dimitrov DS (1986) Liposome electroformation. Faraday Discuss Chem Soc 81:303–311

    Article  CAS  Google Scholar 

  • Angelova MI, Soléau S, Méléard PH, Faucon JF, Bothorel P (1992) Preparation of giant vesicles by external AC electric fields. Kinetics and applications. Prog Colloid Polym Sci 89:127–131

    CAS  Google Scholar 

  • Backer JM, Dawidowicz EA (1981) Transmembrane movement of cholesterol in small unilamellar vesicles detected by cholesterol oxidase. J Biol Chem 256:586–588

    CAS  PubMed  Google Scholar 

  • Bivas I, Hanusse P, Bothorel P, Lalanne J, Aguerre-Chariol O (1987) An application of the optical microscopy to the determination of the curvature elastic modulus of biological and model membranes. J Physique 48:855–867

    Google Scholar 

  • Bloch K (1976) On the evolution of a biosynthetic pathway. In: Kornberg A et al. (eds) Reflections on biochemistry. Pergamon Press, New York, p 143

  • Bloch KE (1983) Sterol structure and membrane function. CRC Crit Rev Biochem 19:47–92

    Google Scholar 

  • Brochard F, Lennon JF (1975) Frequency spectrum of the flicker phenomenon in erythrocytes. J Physique 36:1035–1047

    Google Scholar 

  • Brochard F, de Gennes PG, Pfeuty P (1976) Surface tension and deformations of membrane structures: relation to two-dimensional phase transitions. J Physique 37:1099–1104

    Google Scholar 

  • Döbereiner HG, Selchow O, Lipowsky R (1999) Spontaneous curvature of fluid vesicles induced by trans-bilayer sugar asymmetry. Eur Biophys J 28:174–178

    Article  Google Scholar 

  • Duwe HP, Kaes J, Sackmann E (1990) Bending elastic moduli of lipid bilayers: modulation by solutes. J Phys Fr 51:945–962

    CAS  Google Scholar 

  • Endress E, Bayerl S, Prechtel K, Maier C, Merkel R, Bayerl TM (2002a) The effect of cholesterol, lanosterol and ergosterol on lecithin bilayer mechanical properties at molecular and microscopic dimensions: a solid-state NMR and micropipet study. Langmuir 18:3293–3299

    Article  CAS  Google Scholar 

  • Endress E, Heller H, Casalta H, Brown MF, Bayerl TM (2002b) Anisotropic motion and molecular dynamics of cholesterol, lanosterol, and ergosterol in lecithin bilayers studied by quasi-elastic neutron scattering. Biochem 41:13078–13086

    Article  CAS  Google Scholar 

  • Evans E, Rawicz W (1990) Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett 64:2094–2097

    Article  CAS  PubMed  Google Scholar 

  • Faucon JF, Mitov MD, Méléard P, Bivas I, Bothorel P (1989) Bending elasticity and thermal fluctuations of lipid membranes. Theoretical and experimental requirements. J Phys Fr 50:2389–2414

    Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch 28:693–703

    CAS  Google Scholar 

  • Henriksen JR, Ipsen JH (2002) Thermal undulations of quasi-spherical vesicles stabilized by gravity. Eur Phys J 9:365–374

    Article  CAS  Google Scholar 

  • Henriksen JR, Ipsen JH (2004) Measurement of membrane elasticity by micro-pipette aspiration. Eur Phys J (in press)

  • Ipsen JH, Karlström G, Mouritsen OG, Wennerström H, Zuckermann MJ (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 905:162–172

    CAS  PubMed  Google Scholar 

  • Ipsen JH, Mouritsen OG, Bloom M (1990) Relationships between lipid membrane area, hydrophobic thickness, and acyl-chain orientational order: the effects of cholesterol. Biophys J 57:405–412

    CAS  PubMed  Google Scholar 

  • Jacobs R, Oldfield E (1979) Deuterium nuclear magnetic resonance investigation of dimyristoyllecithin-dipalmitoyllecithin and dimyristoyllecitihin-cholesterol mixtures. Biochem 18:3280–3285

    CAS  Google Scholar 

  • Méléard P, Gerbeaud C, Pott T, Fernandez-Puente L, Bivas I, Mitov MD, Dufourcq J, Bothorel J (1997) Bending elasticities of model membranes: influence of temperature and sterol content. Biophys J 72:2616–629

    PubMed  Google Scholar 

  • Miao L, Lomholt MA, Kleis J (2002a) Dynamics of shape fluctuations of quasi-spherical vesicles revisited. Eur Phys J E 9:143–160

    CAS  PubMed  Google Scholar 

  • Miao L, Nielsen M, Thewalt J, Ipsen JH, Bloom M, Zuckermann MJ, Mouritsen OG (2002b) From lanosterol to cholesterol: structural evolution and differential effects on lipid bilayers. Biophys J 82:1429–1444

    CAS  PubMed  Google Scholar 

  • Milner ST, Safran SA (1987) Dynamical fluctuations of droplet microemulsions and vesicles. Phys Rev A 36:4371–4379

    Article  CAS  PubMed  Google Scholar 

  • Needham D, Nunn RS (1990) Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys J 58:997–1009

    CAS  PubMed  Google Scholar 

  • Needham D, McIntosh TJ, Evans E (1988) Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry 27:4668–4673

    CAS  PubMed  Google Scholar 

  • Nielsen M, Thewalt J, Miao L, Ipsen JH, Bloom M, Zuckermann MJ, Mouritsen OG (2000) Sterol evolution and the physics of membranes. Europhys Lett 52:368–374

    Article  CAS  Google Scholar 

  • Niggeman G, Kummrow M, Helfrich W (1995) The bending rigidity of phosphatidylcholine bilayers: dependences on experimental method, sample cell sealing and temperature. Phys II Fr 5:413–425

    Article  Google Scholar 

  • Patty PJ, Frisken BJ (2003) The pressure-dependence of the size of extruded vesicles. Biophys J 85:996–1004

    CAS  PubMed  Google Scholar 

  • Schneider MB, Jenkins JT, Webb WW (1984) Thermal fluctuations of large quasi-spherical bimolecular phospholipid vesicles. J Physique 45:1457–1472

    CAS  Google Scholar 

  • Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46:13–137

    CAS  Google Scholar 

  • Semer R, Gerelinter E (1979) A spin label study of the effects of sterols on egg lecithin bilayers. Chem Phys Lipids 23:201–211

    Article  CAS  Google Scholar 

  • Smondyrev AM, Berkowitz ML (2001) Molecular dynamics simulation of the structure of dimyristoylphosphatidylcholine bilayers with cholesterol, ergosterol, and lanosterol. Biophys J 80:1649–1658

    CAS  PubMed  Google Scholar 

  • Urbina JA, Pekerar S, Le H, Patterson J, Montez B, Oldfield E (1995) Molecular order and dynamics of phosphatidylcholine bilayer membranes in the presence of cholesterol, ergosterol and lanosterol: a comparative study using 2H-, 13C- and 31P-NMR spectroscopy. Biochim Biophys Acta 1238:163–167

    Article  CAS  PubMed  Google Scholar 

  • Vist MR, Davis JH (1990) Phase-equilibria of cholesterol dipalmitoylphosphatidylcholine mixtures—H-2 nuclear magnetic resonance and differential scanning calorimetry. Biochem 29:451–264

    CAS  Google Scholar 

  • Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). J Biol Chem 276:33540–33546

    Article  CAS  PubMed  Google Scholar 

  • Xu X, London E (2000) The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39:843–849

    Article  CAS  PubMed  Google Scholar 

  • Yeagle PL (1985) Lanosterol and cholesterol have different effects on phospholipid acyl chain ordering. Biochim Biophys Acta 815:33–36

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Martin J. Zuckermann, Jenifer L. Thewalt and Till Boecking for helpful sterol advice. MEMPHYS-Center for Biomembrane Physics is supported by the Danish National Research Foundation. A.C.R. is a Julie Payette Scholar sponsored by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Ipsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henriksen, J., Rowat, A.C. & Ipsen, J.H. Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity. Eur Biophys J 33, 732–741 (2004). https://doi.org/10.1007/s00249-004-0420-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0420-5

Keywords

Navigation