Skip to main content
Log in

Astonishing diversity of natural surfactants: 1. Glycosides of fatty acids and alcohols

  • Review
  • Published:
Lipids

Abstract

Alkyl and fatty acid glycosides have become of great commercial interest in general and specifically for the pharmaceutical, cosmetic, and food industries. Natural surfactants are good sources for future chemical preparation of these glycosides. This review article shows an astonishing diversity of natural surfactants that could be used in laboratories and industry. More than 250 natural surfactants, including their chemical structures and biological activities, are described in this review article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HG:

heterocyst glycolipids

HLB:

hydrophile-lipophile balance

MEL:

mannosylerythritollipids

SEFA:

sucrose esters(s) of fatty acids

TAACF:

Tuberculosis Antimicrobial and Acquisition Coordinating Facility

References

  1. Dembitsky, V.M. (2004) Chemistry and Biodiversity of Biologically Active Natural Glycosides, Chem. Biodiver. 1, 673–781.

    Article  CAS  Google Scholar 

  2. Clayton, W. (1943) Theory of Emusions, p. 127, McGraw-Hill, New York.

    Google Scholar 

  3. Griffin, W.C. (1949) Classification of Surface-Active Agents by “HLB,” J. Soc. Cosmet. Chem. 1, 311–324.

    Google Scholar 

  4. Griffin, W.C. (1954) Calculation of HLB Values of Non-Ionic Surfactants, J. Soc. Cosmet. Chem. 5, 259–267.

    Google Scholar 

  5. Ikan, R. (ed.) (1999) Naturally Occurring Glycosides, John Wiley & Sons, Chichester, England.

    Google Scholar 

  6. Ernst, B., Hart, G.W., and Sinaÿ, P. (eds.) (2000) Carbohydrates in Chemistry and Biology, Wiley-VCH, Weinheim.

    Google Scholar 

  7. Levy, D.E., and Tang, C. (1995). Chemistry of C-Glycosides, Elsevier, Amsterdam.

    Google Scholar 

  8. Kates, M. (ed.) (1990) Glycolipids, Phosphoglycolipids and Sulfoglycolipids. Handbook of Lipid Research, Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  9. Harborne, J.B., and Williams, C.A. (2001) Anthocyanins and Other Flavonoids, Nat. Prod. Rep. 18, 310–333.

    Article  PubMed  CAS  Google Scholar 

  10. Harborne, J.B. (1993) Flavonoids: Advances in Research Since 1986, CRC Press, Boca Raton, Florida.

    Google Scholar 

  11. Esko, J., Marth, J., Cummings, R., Freeze, H., Varki, A., and Hart, G. (eds.) (1999) Essentials of Glycobiology, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  12. Frank, H.A., Young, A.J., Britton, G., and Cogdell, R.J. (eds.) (1999) The Photochemistry of Carotenoids, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  13. Kosaric, N. (1993) Biosurfactants: Production, Properties, Applications, Marcel Dekker, New York.

    Google Scholar 

  14. Holmberg, K. (2001) Natural Surfactants, Curr. Opin. Colloid Interface Sci. 6, 148–159; (b) Tyman, J.H.P. (ed.) (1992) Surfactants in Lipid Chemistry: Recent Synthetic, Physical, and Biodegradative Studies, Royal Society of Chemistry, London.

    Article  CAS  Google Scholar 

  15. Satoshi, O. (ed.) (2002) Macrolide Antibiotics: Chemistry, Biology, and Practice, Academic Press, Amsterdam, Boston.

    Google Scholar 

  16. Rosen, M.J. (2004) Surfactants and Interfacial Phenomena, 3rd edn., pp. 464, John Wiley & Sons, New York.

    Google Scholar 

  17. Van der Meer, M.T.J., Schouten, S., Hanada, S., Hopmans, E.C., Sinninghe Damsté, J.S., and Ward, D.M. (2002) Alkane-1,2-diol-Based Glycosides and Fatty Glycosides and Wax Esters in Roseiflexus castenholzii and Hot Spring Microbial Mats, Arch. Microbiol. 178, 229–237.

    Article  CAS  Google Scholar 

  18. Rezanka, T. (2002) Glycosides of Polyenoic Branched Fatty Acids from Myxomycetes, Phytochemistry 60, 639–646.

    Article  PubMed  CAS  Google Scholar 

  19. Jude, A.R., Little, J.M., Freeman, J.P., Evans, J.E., Radominska-Pandya, A., and Grant, D.F. (2000) Linoleic Acid Diols Are Novel Substrates for Human UDP-Glucuronosyltransferases, Arch. Biochem. Biophys. 380, 294–302.

    Article  PubMed  CAS  Google Scholar 

  20. Řezanka, T., and Dembitsky, V.M. (2003) Brominated Oxylipins and Oxylipin Glycosides from Red Sea Corals, Eur. J. Org. Chem. 14, 309–316.

    Article  Google Scholar 

  21. Simko, I., Omer, E.A., Ewing, E.E., McMurry, S., Koch, J.L., and Davies, P.J. (1996) Tuberonic (12-OH-jasmonic) Acid Glucoside and Its Methyl Ester in Potato, Phytochemistry 43, 727–730.

    Article  CAS  Google Scholar 

  22. Matsuura, H., Yoshira, T., Ichihara, A., Kikuta, Y., and Koda, Y. (1993) Tuber-forming Substances in Jerusalem Artichoke (Helianthus tuberosus L.), Biosci. Biotech. Biochem. 57, 1253–1256.

    CAS  Google Scholar 

  23. Matsuura, H., Yoshihara, T., and Ichihara, A. (1993) 4 New Polyacetylenic Glucosides, Methyl β-d-Glucopyranosyl Helianthenate C-F, from Jerusalem Artichoke (Helianthus tuberosus L.), Biosci. Biotechnol. Biochem. 57, 1492–1498.

    CAS  Google Scholar 

  24. Wang, M., Likuzaki, H., Zhu, N., Sang, N., Nakatani, N., and Ho, C.T. (2000) Isolation and Structural Elucidation of Two New Glycosides from Sage (Salvia officinalis L.), J. Agric. Food Chem. 48, 235–238.

    Article  PubMed  CAS  Google Scholar 

  25. MacLeod, J.K., Rasmussen, H.B., and Wills, A.C. (1997) A New Glycoside Antimicrobial Agent from Persoonia linearis×pinifolia, J. Nat. Prod. 60, 620–622.

    Article  PubMed  CAS  Google Scholar 

  26. Takeda, Y., Takechi, A., Masuda, T., and Otsuka, H. (1998) An Acyclic Monoterpene Glucosyl Ester from Lantana lilacia, Planta Med. 64, 78–79.

    CAS  PubMed  Google Scholar 

  27. Yoshikawa, K., Satou, Y., Tokunaga, Y., Tanaka, M., Arihara, S., and Nigam, S.K. (1998) Four Acylated Triterpenoid Saponins from Albizia procera J. Nat. Prod. 61, 440–445.

    Article  PubMed  CAS  Google Scholar 

  28. Krajewaski, D., Duque, C., and Schreier, P. (1997) Aliphatic β-d-Glucosides from Fruits of Carica pubescens, Phytochemistry 45, 1627–1631.

    Article  Google Scholar 

  29. Stermitz, F.R., Cashman, K.K., Halligan, K.M., Morel, C., Tegos, G.P., and Lewis, K. (2003) Polyacylated Neohesperidosides from Geranium caespitosum: Bacterial Multidrug Resistance Pump Inhibitors, Bioorg. Med. Chem. Lett. 13, 1915–1918.

    Article  PubMed  CAS  Google Scholar 

  30. Boros, C., Katz, B., Mitchell, S., Pearce, C., Swinbank, K., and Taylor, D. (2002) Emmyguyacins A and B: Unusual Glycolipids from a Sterile Fungus Species That Inhibit the Low-pH Conformational Change of Hemagglutinin A During Replication of Influenza Virus, J. Nat. Prod. 65, 108–114.

    Article  PubMed  CAS  Google Scholar 

  31. King, R.R., and Calhoun, L.A. (1988) 2,3-Di-O-and 1,2,3,-Tri-O-Acylated Glucose Esters from the Glandular Trichomes of Datura metel, Phytochemistry 27, 3761–3763.

    Article  CAS  Google Scholar 

  32. King, R.R., Colhoun, L.A., Singh, P.R., and Boucher, A. (1993) Characterization of 2,3,4,3′-Tetra-O-acylated Sucrose Esters Associated with the Glandular Trichomes of Lycopersicon typicum, J. Agric. Food Chem. 41, 469–473.

    Article  CAS  Google Scholar 

  33. Severson, R.F., Arrendale, R.F., Chortyk, O.T., Green, C.R., Thome, F.A., Stewart, J.L., and Johnson, A.W. (1985) Isolation and Characterization of the Sucrose Esters of the Cuticular Waxes of Green Tobacco Leaf, J. Agric. Food Chem. 33, 870–875.

    Article  CAS  Google Scholar 

  34. Arrendale, R.F., Severson, R.F., Sisson, V.A., Costello, C.E., Leary, J.A., Himmelsbach, D.S., and Van Halbeek, H. (1990) Characterization of the Sucrose Esters from Nicotiana glutinosa, J. Agric. Food Chem. 38, 75–85.

    Article  CAS  Google Scholar 

  35. Matsuzaki, T., Shinozaki, Y., Hagimori, M., Tobita, T., Shigematsu, H., and Koiwai, A. (1992) Novel Glycerolipids and Glycolipids from the Surface Lipids of Nicotiana benthamiana, Biosci. Biotech. Biochem. 56, 1565–1569.

    Article  CAS  Google Scholar 

  36. Ohya, I., Shinozaki, Y., Tobita, T., Takahashi, H., Matsuzaki, T., and Koiwai, A. (1994) Sucrose Esters from the Surface Lipids of Nicotiana cavicola, Phytochemistry 37, 143–145.

    Article  PubMed  CAS  Google Scholar 

  37. King, R.R., Singh, R.P., and Calhoun, L.A. (1988) Elucidation of Structures for a Unique Class of 2,3,4,3′-Tetra-O-acylated Sucrose Esters from the Type B Glandular Trichomes of Solanum neocardenusii Hawkes and Hjerting (PI 498129), Carbohydr. Res. 173, 235–241.

    Article  CAS  Google Scholar 

  38. Kandra, L., and Wagner, G.J. (1988) Studies of the Site and Mode of Biosynthesis of Tobacco Trichome Exudate Components, Arch. Biochem. Biophys. 265, 425–432.

    Article  PubMed  CAS  Google Scholar 

  39. Matsuzaki, T., Koseki, K., and Koiwai, A. (1988) Germination and Growth-Inhibition of Surface Lipids from Nicotiana Species and Identification of Sucrose Esters, Agric. Biol. Chem. 52, 1889–1897.

    CAS  Google Scholar 

  40. Ohya, I., Shinozaki, Y., Tobita, T., Takahashi, H., and Matsuzaki, T. (1996) Sucrose Esters from the Surface Lipids of Petunia hybrida, Phytochemistry 47, 787–789.

    Article  Google Scholar 

  41. King, R.R., Calhoun, L.A., Singh, R.P., and Boucher, A. (1990) Sucrose Esters Associated with glandular Trichomes of Wild Lycopersicon Species, Phytochemistry 29, 2115–2118.

    Article  CAS  Google Scholar 

  42. King, R.R., Pelletier, Y., Singh, R.P., and Calhoun, L.A. (1986) 3,4-Di-O-isobutyryl-6-O-Caprylsucrose: The Major Component of a Novel Sucrose Ester Complex from the Type B Glandular Trichomes of Solanum berthaultii Hawkes (PI 473340), J. Chem. Soc. Chem. Commun., 1078–1079.

  43. King, R.R., Singh, R.P., and Boucher, A. (1987) Variation in Sucrose Esters from the Type B Glandular Trichomes of Certain Wild Potato Species, Am. Potato J. 64, 529–534.

    Google Scholar 

  44. King, R.R., Singh, R.P., and Calhoun, L.A. (1987) Isolation and Characterization of 3,3′,4,6-Tetra-O-acylated Sucrose Esters from the Type B Glandular Trichomes of Solanum berthaultii Hawkes (PI 265857), Carbohydr. Res. 166, 113–121.

    Article  CAS  Google Scholar 

  45. King, R.R., Singh, R.P., and Calhoun, L.A. (1988) Elucidation of Structures for a Unique Class of 2,3,4,3′-Tetra-O-acylated Sucrose Esters from the Type B Glandular Trichomes of Solanum neocardenusii Hawkes and Hjerting (PI 498129), Carbohydr. Res. 173, 235–241.

    Article  CAS  Google Scholar 

  46. Matsuzaki, T., Shinozaki, Y., Suhara, S., Tobita, T., Shigematsu, H., and Koiwai, A. (1991) Leaf Surface Glycolipids from Nicotiana acuminata and Nicotiana pauciflora, Agric. Biol. Chem. 55, 1417–1419.

    CAS  Google Scholar 

  47. King, R.R., and Calhoun, L.A. (1988) 3,4-Di-O-and 2,3,4-Tri-O-acylated Glucose Esters from the Glandular Trichomes of Nontuberous Solanum species, Phytochemistry 27, 3765–3768.

    Article  CAS  Google Scholar 

  48. Burke, B.A., Goldsby, G., and Mudd, J.B. (1987) Polar Epicuticular Lipids of Lycopersicon pennellii, Phytochemistry 26, 2567–2571.

    Article  CAS  Google Scholar 

  49. Hill, K., and Rhode, O. (1999) Sugar-Based Surfactants for Consumer Products and Technical Applications, FETT/Lipid 101, 25–33.

    Article  CAS  Google Scholar 

  50. Akoh, C.C., and Swanson, B.G. (1994) Carbohydrate Polyesters as Fat Substitutes, Marcel Dekker, New York.

    Google Scholar 

  51. Kobayashi, J., Doi, Y., and Ishibashi, M. (1994) Shimofuridin-A, a Nucleoside Derivative Embracing an Acylfucopyranoside Unit Isolated from the Okinawan Marine Tunicate Aplidium multiplicatum, J. Org. Chem. 59, 255–257.

    Article  CAS  Google Scholar 

  52. Doi, Y., Ishibashi, M., and Kobayashi, J. (1994) Isolation and Structure of Shimofuridins B-G from the Okinawan Marine Tunicate Aplidium multiplicatum, Tetrahedron 50, 8651–8656.

    Article  CAS  Google Scholar 

  53. Riva, S. (2002) Enzymatic Modification of the Sugar Moieties of Natural Glycosides, J. Mol. Catal. B Enzymol. 19, 43–54.

    Article  Google Scholar 

  54. Lang, S., and Wullbrandt, D. (1999) Rhamnose Lipids—Biosynthesis, Microbial Production and Application Potential, Appl. Microbiol. Biotechnol. 51, 22–32.

    Article  PubMed  CAS  Google Scholar 

  55. Rosenberg, E., and Ron, E.Z. (1999) High-and Low-Molecular Mass Microbial Surfactants, Appl. Microbiol. Biotechnol. 52, 154–162.

    Article  PubMed  CAS  Google Scholar 

  56. Mailer, R.M., and Soberon-Chavez, G. (2000) Pseudomonas aeruginosa Rhamnolipids: Biosynthesis and Potential Applications, Appl. Microbiol. Biotechnol. 54, 625–633.

    Article  Google Scholar 

  57. Lang, S. (2002) Biological Amphiphiles (Microbial Biosurfactants), Curr. Opin. Colloid Interf. Sci. 7, 12–20.

    Article  CAS  Google Scholar 

  58. Ron, E.Z., and Rosenberg, E. (2002) Biosurfactants and Oil Bioremediatin, Curr. Opin. Biotechnol. 13, 249–252.

    Article  PubMed  CAS  Google Scholar 

  59. Bergstrom, S., Theorell, H., and Davide, H. (1946) On a Metabolic Product of Ps. pyocyanea, Pyolipic Acid, Active Against Myobacteria tuberculosis, Ark. Kem. Mineral Geol. 23A, 1–12.

    Google Scholar 

  60. Jarvis, F.G., and Johnson, M.J. (1949) A Glyco-Lipide Produced by Pseudomonas aeruginosa, J. Am. Chem. Soc. 71, 4124–4126.

    Article  CAS  Google Scholar 

  61. Edwards, J.R., and Hayashi, J.A. (1965) Structure of a Rhamnolipid from Pseudomonas aeruginosa, Arch. Biochem. Biophys. 111, 415–421.

    Article  PubMed  CAS  Google Scholar 

  62. Hisatsuka, K., Nakahara, T., Sano, N., and Yamada, K. (1971) Formation of Rhamnolipid by Pseudomonas aeruginosa and Its Function in Hydrocarbon Fermentation, Agric. Biol. Chem. 35, 686–692.

    Google Scholar 

  63. Itoh, S., Honda, H., Tomita, F., and Suzuki, T. (1971) Rhamnolipids Produced by Pseudomonas aeruginosa Grown on n-Paraffin, J. Antibiot. (Tokyo) 24, 855–859.

    CAS  Google Scholar 

  64. Yamaguchi, M., Sato, A., and Yukuyama, A. (1976) Microbial Production of Sugar-Lipids, Chem. Ind. 4, 741–742.

    Google Scholar 

  65. Hirayama, T., and Kato, I. (1982) Novel Methyl Rhamnolipids from Pseudomonas aeruginosa, FEBS Lett. 139, 81–85.

    Article  CAS  Google Scholar 

  66. Syldatk, C., Lang, S., Wagner, F., Wray, V., and Witte, L. (1985) Chemical and Physical Characterization of Four Interfacial-Active Rhamnolipids from Pseudomonas Species DSM 2874 Grown on n-Alkanes, Z. Naturforsch. 40, 51–60.

    CAS  Google Scholar 

  67. Syldatk, C., Lang, S., Matulovic, U., and Wagner, F. (1985) Production of Four Interfacial Active Rhamnolipids from n-Alkanes or Glycerol by Resting Cells of Pseudomonas Species DSM 2874, Z. Naturforsch. 40, 61–67.

    CAS  Google Scholar 

  68. Rendell, N.B., Taylor, G.W., Somerville, M., Todd, H., Wilson, R., and Cole, J. (1990) Characterization of Pseudomonas Rhamnolipids, Biochim. Biophys. Acta 1045, 189–193.

    PubMed  CAS  Google Scholar 

  69. Abalos, A., Pinazo, A., Infane, M.R., Casals, M., Garcýa, F., and Manresa, A. (2001) Physicochemical and Antimicrobial Properties of New Rhamnolipids Produced by Pseudomonas aeruginosa AT10 from Soybean Oil Refinery Wastes, Oangmuir 17, 1367–1371.

    Article  CAS  Google Scholar 

  70. Kitamoto, D., Yanagishita, H., Haraya, K., and Kitamoto, H.K. (1998) Contribution of a Chain-Shortening Pathway to the Biosynthesis of the Fatty Acids of Mannosylerythritol Lipid (Biosurfactant) in the Yeast Candida antarctica: Effect of β-Oxidation Inhibitors on Biosurfactant Synthesis, Biotechnol. Lett. 20, 813–818.

    Article  CAS  Google Scholar 

  71. Kitamoto, D., Sangita, G., Ourisson, G., and Nakatani, Y. (2000) Formation of Giant Vesicles from Diacylmannosylerythritols, and Their Binding to Concanavalin A, Chem. Commun., 861–862.

  72. Wakamatsu, Y., Zhao, X., Jin, C., Day, N., Shibahara, M., Nomura, N., Nakahara, T., Murata, T., and Yokoyama, K.K. (2001) Mannosylerythritol Lipid Induces Characteristics of Neuronal Differentiation in PC12 Cells Through an ERK-Related Signal Cascade, Eur. J. Biochem. 268, 374–383.

    Article  PubMed  CAS  Google Scholar 

  73. Zhao, X., Wakamatsu, Y., Shibahara, M., Nomura, N., Geltinger, C., Nakahara, T., Murata, T., and Yokoyama, K.K. (1999) Mannosylerythritol Lipid Is a Potent Inducer of Apoptosis and Differentiation of Mouse Melanoma Cells in Culture, Cancer Res. 59, 482–486.

    PubMed  CAS  Google Scholar 

  74. Kitamoto, D., Yanagishita, H., Endo, A., Nakaiwa, M., Nakane, T., and Akiya, T. (2001) Remarkable Antiagglomeration Effect of a Yeast Biosurfactant, Diacylmannosylerythritol, on Ice-Water Slurry for Cold Thermal Storage, Biotechnol. Prog. 17, 362–365.

    Article  PubMed  CAS  Google Scholar 

  75. Cameotra, S.S., and Makkar, R.S. (2004) Recent Applications of Biosurfactants as Biological and Immunological Molecules, Curr. Opin. Microbiol. 7, 262–266.

    Article  PubMed  CAS  Google Scholar 

  76. Kitamoto, D., Ikegami, T., Suzuki, G.T., Sasaki, A., Takeyama, Y.I., Idemoto, Y., Koura, N., and Yanagishita, H. (2001) Microbial Conversion of n-Alkanes into Glycolipid Biosurfactants, Mannosylerythritol Lipids by Pseudozyma (Candida anteractica), Biotechnol. Lett. 23, 1709–1714; (b) Umehara, K., Nemoto, K., Ohkubo, T., Miyase, T., Degawa, M., and Noguchi, H. (2004) Isolation of a New 15-Membered Macrocyclic Glycolipid Lactone. Cuscutic Resinoside A from the Seeds of Cuscuta chinensis: A Stimulator of Breast Cancer Cell Proliferation, Planta Med. 70, 299–304.

    Article  CAS  Google Scholar 

  77. Asselineau, C., and Asselineau, J. (1978) Trehalose-Containing Glycolipids, Prog. Chem. Fats Other Lipids 16, 59–99.

    Article  PubMed  CAS  Google Scholar 

  78. Vilkas, E., and Rojas, A. (1964) On the Lipids of Mycobacterium fortuitum, Bull. Soc. Chim. Biol. 46, 689–701.

    PubMed  CAS  Google Scholar 

  79. Azuma, I., and Yamamura, Y.J. (1962) Studies on the Firmly Bound Lipids of Human Tubercle bacillus. I. Isolation of Arabinose Mycolate, Biochemistry (Tokyo) 52, 200–206; (b) Vilkas, E., Adam, A., and Senn, M. (1968) Isolation of a New Type of Trehalose Diester from Mycobacterium fortuitum, Chem. Phys. Lipids 2, 11–16.

    CAS  Google Scholar 

  80. Prottey, C., and Ballou, C.E. (1968) Diacyl Myoinositol Monomannoside from Propionibacterium shermanii, J. Biol. Chem. 243, 6196–6201; (b) Shaw, N., and Dinglinger, F. (1969) The Structure of an Acylated Inositol Mannoside in the Lipids of Propionic Acid Bacteria, Biochem. J. 112, 769–775.

    PubMed  CAS  Google Scholar 

  81. Noll, H., Bloch, H., Asselineau, J., and Lederer, E. (1956) The Chemical Structure of the Cord Factor of Mycobacterium tuberculosis, Biochim. Biophys. Acta 20, 299–309.

    Article  PubMed  CAS  Google Scholar 

  82. Asselineau, J., and Lederer, E. (1955) Constitution of the Cord Factor Isolated from a Human Strain of Mycobacterium tuberculosis, Biochim. Biophys. Acta 17, 161–168.

    Article  PubMed  CAS  Google Scholar 

  83. Asselineau, C., Montrozier, H., Prome, J.C., Savagnac, A., and Welby, M. (1972) Polyunsaturated Glycolipids Synthesized by Mycobacterium phlei, Eur. J. Biochem. 28, 102–109.

    Article  PubMed  CAS  Google Scholar 

  84. Goren, M.B. (1970) Sulfolipid I of Mycobacterium tuberculosis, Strain H37Rv: I. Purification and Properties, Biochim. Biophys. Acta 210, 116–126.

    PubMed  CAS  Google Scholar 

  85. Goren, M.B. (1970) Sulfolipid I of Mycobacterium tuberculosis, Strain H37Rv: II. Structural Studies, Biochim. Biophys. Acta 210, 127–138.

    PubMed  CAS  Google Scholar 

  86. Esch, S.W., Morton, M.D., Williams, T.D., and Buller, C.S. (1999) A Novel Trisaccharide Glycolipid Biosurfactant Containing Trehalose Bears Ester-Linked Hexanoate, Succinate, and Acyloxyacyl Moieties: NMR and MS Characterization of the Underivatized Structure, Carbohydr. Res. 319, 112–123.

    Article  PubMed  CAS  Google Scholar 

  87. Mayorga, H., Duqur, C., Knapp, H., and Winterhalter, P. (2002) Hydroxyester Dissaccharides from Fruits of Cape Gooseberry (Physalis peruviana) Phytochemistry 59, 439–445.

    Article  PubMed  CAS  Google Scholar 

  88. Mayorga, H., Knapp, H., Winterhalter, P., and Duque, C. (2001) Glycosidically Bound Flavor Compounds of Cape Gooseberry (Physalis peruviana L.), J. Agric. Food Chem. 49, 1904–1908.

    Article  PubMed  CAS  Google Scholar 

  89. Batrakov, S.G., Konova, I.V., Sheichenko, V.I., and Galanina, L.A. (2003) Glycolipids of the Filamentous Fungus Absidia corymbifera F-295, Chem. Phys. Lipids 123, 157–164.

    Article  PubMed  CAS  Google Scholar 

  90. Tulloch, A.P. (1964) The Component Fatty Acids of Oils Found in Spores of Plant Rusts and Other Fungi. IV, Can. J. Microbiol. 10, 359–364.

    Article  PubMed  CAS  Google Scholar 

  91. Davila, A.M., Marchal, R., Monin, N., and Vandecasteele, J.P. (1993) Identification and Determination of Individual Sophorolipids in Fermentation Products by Gradient Elution High-Performance Liquid Chromatography with Evaporative Light-Scattering Detection, J. Chromatogr. 648, 139–149.

    Article  PubMed  CAS  Google Scholar 

  92. Tulloch, A.P., and Spencer, J.F. (1972) Formation of a Long-Chain Alcohol Ester of Hydroxy Fatty Acid Sophoroside by Fermentation of Fatty Alcohol by a Torulopis Species, J. Org. Chem. 37, 2868–2870.

    Article  PubMed  CAS  Google Scholar 

  93. Spencer, J.F., Gorin, P.A., and Tulloch, A.P. (1970) Torulopsis bombicola sp. N, Antonie Van Leeuwenhoek. 36, 129–133.

    Article  PubMed  CAS  Google Scholar 

  94. Rau, U., Hammen, S., Heckmann, R., Wray, V., and Lang, S. (2001) Sophorolipids: A Source for Novel Compounds, Ind. Crops Prod. 13, 85–92.

    Article  CAS  Google Scholar 

  95. Hommel, R.K., Weber, L., Weiss, A., Himelreich, U., Rilke, O., and Kleber, H.P. (1994) Production of Sophorose Lipid by Canadida (Torulopsis) apicola Grown on Glucose, J. Biotechnol. 33, 147–155.

    Article  CAS  Google Scholar 

  96. Weber, L., Stach, J., Haufe, G., Hommel, R., and Kleber, H.-P. (1990) Structure Elucidation of an Unusual Glycolipid by Two-Dimensional N.M.R. Methods, J. Mol. Struct. 219, 353–358.

    Article  CAS  Google Scholar 

  97. Cooper, D.G. (1986) Biosurfactants, Microbiol. Sci. 3, 145–149.

    PubMed  CAS  Google Scholar 

  98. Otto, R.T., Daniel, H.J., Pekin, G., Muller-Decker, K., Furstenberger, G., Reuss, M., and Syldatk, C. (1999) Production of Sophorolipids from Whey. II. Product Composition, Surface Active Properties, Cytotoxicity and Stability Against Hydrolases by Enzymatic Treatment, Appl. Microbiol. Biotechnol. 52, 495–501.

    Article  PubMed  CAS  Google Scholar 

  99. Desai, J.D., and Banat, I.M. (1997) Microbial Production of Surfactants and Their Commercial Potential, Microbiol. Mol. Biol. Rev. 61, 47–64.

    PubMed  CAS  Google Scholar 

  100. Vollbrecht, E., Rau, U., and Lang, S. (1999) Microbial Conversion of Vegetable Oils into Surface-Active Di-, Tri-, and Tetrasaccharide Lipids (Biosurfactants) by the Bacterial Strain Tsukamurella spec., Fett/Lipid 101, 389–394.

    Article  CAS  Google Scholar 

  101. Levand, O., and Larson, H. (1979) Some Chemical Constituents of Morinda citrifolia, Plant Med. 36, 186–187.

    Article  CAS  Google Scholar 

  102. Hirazumi, A., Furusawa, E., Chou, S.C., and Hokama, Y. (1994) Anticancer Activity of Morinda citrifolia (noni) on Intraperitoneally Implanted Lewis Lung Carcinoma in Syngeneic Mice, Proc. West. Pharmacol. Soc. 37, 145–146.

    PubMed  CAS  Google Scholar 

  103. Hirazumi, A., Furusawa, E., Chou, S.C., and Hokama, Y. (1996) Immunomodulation Contributes to the Anticancer Activity of Morinda citrifolia (noni) Fruit Juice, Proc. West. Pharmacol. Soc. 39, 7–9.

    PubMed  CAS  Google Scholar 

  104. Wang, M., Kikuzaki, H., Jin, Y., Nakatani, N., Zhu, N., Csisar, K., Boyd, C., Rosen, R., Ghal, G., and Ho, C.T. (2000) Novel Glycosides from Noni (Morinda citrifolia), J. Nat. Prod. 63, 1182–1183.

    Article  PubMed  CAS  Google Scholar 

  105. Lee, J., and Hollingsworth, R.I. (1996) Isolation and Characterization of a β-1-O-Acyl-β-1,2-diglucosyl Glycoside from the Membranes of a Gram Positive Bacterium Sarcina ventriculi, Tetrahedron 52, 3873–3878.

    Article  CAS  Google Scholar 

  106. Perda-Miranda, R., and Hernandez-Carlos, B. (2002) HPLC Isolation and Structural Elucidation of Diastereomeric Niloyl Ester Tetrasaccharides from Mexican Scammony Root, Tetrahedron 58, 3145–3154.

    Article  Google Scholar 

  107. Gasper, E.M.M. (1999) New Pentasaccharide Macrolactone from the European Convolvulaceae Calystegia soldanella, Tetrahedron Lett. 40, 6861–6864.

    Article  Google Scholar 

  108. Font Quer, P. (1962) Plantas Medicinales, Labor, S.A. (ed.), El Dioscorides Renovado, Madrid, p. 543.

    Google Scholar 

  109. MacLeod, J.K., Ward, A., and Oelrichs, P.B. (1997) Structural Investigation of Resin Glycosides from Ipomoea lonchophylla, J. Nat. Prod. 60, 467–471.

    Article  PubMed  CAS  Google Scholar 

  110. Heacock, R.A. (1975) Psychotomimetics of the Convolvulaceae, Prog. Med. Chem., 11, 91–118.

    Article  PubMed  CAS  Google Scholar 

  111. Bieber, L.W., Da Silva, F., Correa Lima, R.M.O., De Andrade Chiappeta, A., Do Naschimento, S.C., De Souza, I.A., De Mello, J.F., and Veith, H.J. (1986) Anticancer and Antimicrobial Glycosides from Ipomoea bahiensis, Phytochemistry 25, 1077–1081.

    Article  CAS  Google Scholar 

  112. Du, X.M., Sun, N.S., Nishi, M., Lawasaki, T., Guo, Y.T., and Miyahara, K. (1999) Components of the Ether-Insoluble Resin Glycoside Fraction from the Seed of Cuscuta australis, J. Nat. Prod. 62, 722–723.

    Article  PubMed  CAS  Google Scholar 

  113. Noda, N., Takahashi N., Miyahara, K., and Yang, C.R. (1998) Stoloniferins VIII–XII, Resin Glycosides, from Ipomoea stolonifera, Phytochemistry 48, 837–841.

    Article  PubMed  CAS  Google Scholar 

  114. MacLeod, J.K., and Ward, A. (1997) Structural Investigation of Resin Glycosides from Ipomoea lonchophylla, J. Nat. Prod. 60, 467–471.

    Article  PubMed  CAS  Google Scholar 

  115. Barnes, C.C., Smalley, M.K., Manfredi, K.P., Kindscher, K., Loring, H., and Sheeley, D.M. (2003) Characterization of an Anti-Tuberculosis Resin Glycoside from the Prairie Medicinal Plant Ipomoea leptophylla, J. Nat. Prod. 66, 1457–1462.

    PubMed  CAS  Google Scholar 

  116. Rezanka, T., and Guschina, I.A. (2001) Glycoside Esters from Lichens of Central Asia, Phytochemistry 58, 509–516.

    Article  PubMed  CAS  Google Scholar 

  117. Rezanka, T., and Guschina, I.A. (2000) Glycosidic Compounds of Murolic, Protoconstipatic and Allo-murolic Acids from Lichens of Central Asia, Phytochemistry 54, 635–645.

    Article  PubMed  CAS  Google Scholar 

  118. Vulfson, E.N. (1992) Enzymatic Synthesis of Surfactans, in Tyman, J.H.P. (ed.), Surfactants in Lipid Chemistry: Recent Synthetic, Physical, and Biodegradative Studies, Royal Society of Chemistry, London, pp. 17–37.

    Google Scholar 

  119. Kikuchi, H., Saito, Y., Komiya, J., Takaya, Y., Honma, S., Nakahata, N., Ito, A., and Oshima, Y. (2001) Furanodictine A and B: Amino Sugar Analogues Produced by Cellular Slime Mold Dictyostelium discoideum Showing Neuronal Differentiation Activity, J. Org. Chem. 66, 6982–6987.

    Article  PubMed  CAS  Google Scholar 

  120. Milkereit, G., Morr, M., Thiem, J., and Vill, V. (2004) Thermotropic and Lyotropic Properties of Long Chain Alkyl Glycopyranosides: Part III: pH-Sensitive Headgroups, Chem. Phys. Lipids 127, 47–63.

    Article  PubMed  CAS  Google Scholar 

  121. Gradzielski, M. (2004) Vesicle Gels—Phase Behaviour and Process of Formation, Curr. Opin. Colloid Interface Sci. 9, 149–153.

    Article  CAS  Google Scholar 

  122. Platz, G., Polike, J., and Thunig, C. (1995) Phase Behavior, Lyotropic Phases, and Flow Properties of Alkyl Glycosides in Aqueous Solution, Langmuir 11, 4250–4255.

    Article  CAS  Google Scholar 

  123. Hoffmann, B., and Platz, G. (2001) Phase and Aggregation Behaviour of Alkylglycosides, Curr. Opin. Colloid Interface Sci. 6, 171–177.

    Article  CAS  Google Scholar 

  124. Kaneko, T., Ohtani, K., Kasai, R., Yamasaki, K., and Duc, N.M. (1998) n-Alkyl Glycosides and p-Hydroxybenzoyloxy Glucose from Fruits of Crescentia cujete, Phytochemistry 47, 259–263.

    Article  CAS  Google Scholar 

  125. Boulanger, R., and Crouzet, J. (2001) Identification of the Aroma Components of Acerola (Malphigia glabra L.): Free and Bound Flavour Compounds, Food Chem. 74, 209–216.

    Article  CAS  Google Scholar 

  126. Milos, M., Mastelic, J., and Jerkovic, I. (2000) Chemical Composition and Antioxidant Effect of Glycosidically Bound Volatile Compounds from Oregano (Origanum vulgare L. ssp. hirtum), Food Chem. 71, 79–83.

    Article  CAS  Google Scholar 

  127. De Rosa, S., De Giulio, A., and Tommonaro, G. (1996) Aliphatic and Aromatic Glycosides from the Cell Cultures of Lycopersicon esculentum, Phytochemistry 42, 1031–1034.

    Article  PubMed  Google Scholar 

  128. Takayanagi, T., Ishikawa, T., and Kitajima, J. (2003) Sesquiterpene Lactone Glucosides and Alkyl Glycosides from the Fruit of Cumin, Phytochemistry 63, 479–484.

    PubMed  CAS  Google Scholar 

  129. Ono, M., Yoshida, A., Ito, Y., and Nohara, T. (1999) Phenethyl Alcohol Glycosides and Isopentenol Glycoside from Fruit of Bupleurum falcatum Phytochemistry 51, 819–823.

    Article  PubMed  CAS  Google Scholar 

  130. Çalis, I., and Kirmizibekmez, H. (2004) Glycosides from Phlomis lunariifolia, Phytochemistry 65, 2619–2625.

    Article  PubMed  CAS  Google Scholar 

  131. Tanahashi, T., Shimada, A., Kai, M., Nagakura, N., Inoue, K., and Chen, C.C. (1996) An Iridoid Glucoside from Jasminum hemsleyi, J. Nat. Prod. 59, 798–800.

    Article  PubMed  CAS  Google Scholar 

  132. Messanga, B.B., fon Kimbu, S., Sondengam B.L., and Bodo, B. (2001) Two New Fatty Acid Glucosides from the Root Bark of Ochna calodendron, Fitoterapia 72, 732–736.

    Article  PubMed  CAS  Google Scholar 

  133. Simko, I., Omer, E.A., Ewing, E.E., McMurry, S., Koch, J.L., and Davies, P.J. (1996) Tuberonic (12-OH-jasmonic) Acid Glucoside and Its Methyl Ester in Potato, Phytochemistry 43, 727–730.

    Article  CAS  Google Scholar 

  134. Gambacorta, A., Soriente, A., Trincone, A., and Sodano, G. (1995) Biosynthesis of the Heterocyst Glycolipids in the Cyanobacterium Anabaena cylindrica, Phytochemistry 39, 771–774.

    Article  CAS  Google Scholar 

  135. Lambein, F., and Wolk, C.P. (1973) Structural Studies on the Glycolipids from the Envelope of the Heterocyst of Anabaena cylindrica, Biochemistry 12, 791–798.

    Article  PubMed  CAS  Google Scholar 

  136. Adams, D.G., and Duggan, P.S. (1999) Tansley Review No. 107. Heterocyst and Akinete Differentiation in Cyanobacteria, New Phytol. 144, 3–33.

    Article  Google Scholar 

  137. Soriente, A., Bisogno, T., Gambacorta, A., Romano, I., Sili, C., Trincone, A., and Sodano, G. (1995) Reinvestigation of Heterocyst Glycolipids from the Cyanobacterium, Anabaena cylindrica, Phytochemistry 38, 641–645.

    Article  CAS  Google Scholar 

  138. Voutquenne, L., Lavaud, C., Massiot, G., Sevenet, T., and Hadi, H.A., (1999) Cytotoxic Polyisoprenes and Glycosides of Long-Chain Fatty Alcohols from Dimocarpus fumatus, Phytochemistry 50, 63–69.

    Article  PubMed  CAS  Google Scholar 

  139. Linington, R.G., Robertson, M., Gauthier, A., Finlay, B.B., van Soes R., and Andersen, R.J. (2002) Caminoside A, an Antimicrobial Glycolipid Isolated from the Marine Sponge Caminus sphaeroconia, Org. Lett. 4, 4089–4092.

    Article  PubMed  CAS  Google Scholar 

  140. Wu, J., Zhang, S., Xiao Q., Li, Q., Huang, J., Long, L., and Huang, L. (2003) Phenylethanoid and Aliphatic Alcohol Glycosides from Acanthus ilicifolius, Phytochemistry 63, 491–495.

    PubMed  CAS  Google Scholar 

  141. Babu, B.H., Shylesh, B.S., and Padikkala, J. (2001) Antioxidant and Hepatoprotective Effect of Acanthus ilicifolius, Fitoterapia 72, 272–277.

    Article  PubMed  CAS  Google Scholar 

  142. Babu, B.H., Shylesh, B.S., and Padikkala, J. (2002) Tumour Reducing and Anticarcinogenic Activity of Acanthus ilicifolius in Mice, J. Ethnopharmacol. 79, 27–33.

    Article  PubMed  CAS  Google Scholar 

  143. Kanchanapoom, T., Kasai, R., Picheansoonthon, C., and Yamasaki, K. (2001) Megastigmane, Aliphatic Alcohol and Benzoxazinoid Glycosides from Acanthus ebracteatus, Phytochemistry 58, 811–817.

    Article  PubMed  CAS  Google Scholar 

  144. Wu, J., Zhang, S., Huang, J., Xiao, Q., Li, Q., Long, L., and Huang, L. (2003) New Aliphatic Alcohol and (Z)-4-Coumaric Acid Glycosides from Acanthus ilicifolius, Chem. Pharm. Bull. 51, 1201–1203.

    Article  PubMed  CAS  Google Scholar 

  145. Kanchanapoom, T., Ruchirawat, S., Kasai, R., and Otsuka, H. (2004) Aliphatic Alcohol and Iridoid Glycosides from Asystasia intrusa, Chem. Pharm. Bull. 52, 980–982.

    Article  PubMed  CAS  Google Scholar 

  146. Yamamura, S., Ozawa, K., Ohtani, K., Kasai, R., and Yamasaki, K. (1998) Antihistaminic Flavones and Aliphatic Glycosides from Mentha spicata, Phytochemistry 48, 131–136.

    Article  CAS  Google Scholar 

  147. Kanchanapoom, T., Kasai, R., and Yamasaki, K. (2001) Iridoid Glucosides from Barleria lupulina, Phytochemistry 58, 337–341.

    Article  PubMed  CAS  Google Scholar 

  148. Costantino, V., Fattorusso, E., Mangoni, A., Di Rosa, M., and Ianaro, A. (1999) Glycolipids from Sponges: VII. Simplexides, Novel Immunosuppressive Glycolipids from the Caribbean Sponge Plakortis simplex, Bioorg. Med. Chem. Lett. 9, 271–276.

    Article  PubMed  CAS  Google Scholar 

  149. Gunstone, F.D., Harwood, J.L., and Padley, F.B. (1994) The Lipid Handbook, pp. 39–54, Chapman & Hall, London.

    Google Scholar 

  150. Costantino, V., Fattorusso, E., and Mangoni, A. (2000) Glycolipids from Sponges. Part 9: Plakoside C and D, Two Further Prenylated Glycosphingolipids from the Marine Sponge Ectyoplasia ferox, Tetrahedron 56, 5953–5957

    Article  CAS  Google Scholar 

  151. Costantino, V., Fattorusso, E., Imperatore, C., and Mangoni, A. (2001) Plaxyloside from the Marine Sponge Plakortis simplex: An Improved Strategy for NMR Structural Studies of Carbohydrate Chains, Eur. J. Org. Chem. 23, 4457–4462.

    Article  Google Scholar 

  152. Rezanka, T., and Dvoráková, R. (2003) Polypropionate Lactones of Deoxysugars Glycosides from Slime Mold, Lycogala epidendrum, Phytochemistry 63, 945–952.

    Article  CAS  Google Scholar 

  153. Tabata, N., Ohyama, Y., Tomoda, H., Abe, T., Namikoshi, M., and Omura, S. (1999) Structure Elucidation of Roselipins, Inhibitors of Diacylglycerol Acyltransferase Produced by Gliocladium roseum KF-1040, J. Antibiot. 52, 815–822.

    PubMed  CAS  Google Scholar 

  154. Tomoda, H., Ohyama, Y., Abe, T., Tabata, N., Namikoshi, M., Yamaguchi, Y., Masuma, R., and Omura, S. (1999) Roselipins, Inhibitors of Diacylglycerol Acyltransferase Produced by Gliocladium roseum KF-1040. Production, Isolation and Biological Properties, J. Antibiot. 52, 689–704.

    PubMed  CAS  Google Scholar 

  155. Tabata, N., Ohyama, Y., Tomoda, H., Abe, T., Namikoshi, M., and Omura, S. (1999) Structure Elucidation of Roselipins, Inhibitors of Diacylglycerol Acyltransferase Produced by Gliocladium roseum KF-1040, J. Antibiot. 52, 815–826.

    PubMed  CAS  Google Scholar 

  156. Liu, H., Orjala, J., Rali, T., and Sticher, O. (1998) Glycosides from Stenochlaena palustris, Phytochemistry 49, 2403–2408.

    Article  CAS  Google Scholar 

  157. Thomas, B.V., Schreiber, A.A., and Weisskopf, C.P. (1988) Simple Method for Quantitation of Capsaicinoids in Pepper Using Capillary Gas Chromatography, J. Agric. Food Chem. 46, 2655–2663.

    Article  Google Scholar 

  158. Iorizzi, M., Lanzotti, V., De Marino, S., Zollo, F., Blanco-Molina, M., Macho, A., and Munoz, E. (2001) New Glycosides from Capsicum annuum L. var. acuminatum. Isolation, Structure Determination, and Biological Activity, J. Agric. Food Chem. 49, 2022–2029.

    Article  PubMed  CAS  Google Scholar 

  159. Izumitani, Y., Yahara, S., and Nohara, T. (1990) Novel Acyclic Diterpene Glycosides, Capsianosides-A-F and Capsianosides-I-V from Capsicum Plants—Solanaceous Studies, Chem. Pharm. Bull. 38, 1299–1307.

    CAS  Google Scholar 

  160. Yahara, S., Kobayashi, N., Izumitani, Y., and Nohara, T. (1991) Studies on the Solanaceous Plants: 23. New Acyclic Diterpene Glycosides, Capsianoside-VI, Capsianoside-G and Capsianoside-H from the Leaves and Stems of Capsicum annuum L., Chem. Pharm. Bull. 39, 3258–3260.

    CAS  Google Scholar 

  161. Shimizu, M. (1999) Modulation of Intestinal Functions by Food Substances, Nahrung/Food 43, 154–158.

    Article  CAS  Google Scholar 

  162. Kim, Y.C., and Kingston, D.G.I. (1996) A New Caprylic Alcohol Glycoside from Circaea lutetiana ssp. canadensis, J. Nat. Prod. 59, 1096–1098.

    Article  CAS  Google Scholar 

  163. Ling, S.-K., Tanaka, T., and Kouno, I. (2002) New Cyanogenic and Alkyl Glycoside Constituents from Phyllagathis rotundifolia, J. Nat. Prod. 65, 131–135.

    Article  PubMed  CAS  Google Scholar 

  164. Costantino, V., Fattorusso, E., Mangoni, A., Aknin, M., Fall, A., Samb, A., and Miralles, J. (1993) An Unusual Ether Glycolipid from the Senegalese Sponge Trikentrion loeve Carter, Tetrahedron 49, 2711–2716.

    Article  CAS  Google Scholar 

  165. Costantino, V., Fattorusso, E., and Mangoni, A. (1993) Isolation of Five-Membered Cyclitol Glycolipids, Crasserides: Unique Glycerides from the Sponge Pseudoceratina crassa, J. Org. Chem. 58, 186–191.

    Article  CAS  Google Scholar 

  166. Wang, N.L., Yao, X.S., Ishii, R., and Kitanaka, S. (2001) Antiallergic Agents from Natural Sources: 3. Structures and Inhibitory Effects on Nitric Oxide Production and Histamine Release of Five Novel Polyacetylene Glucosides from Bidens parviflora WILLD, Chem. Pharm. Bull. 49, 938–942.

    Article  PubMed  CAS  Google Scholar 

  167. Ubillas, R.P., Mendez, C.D., Jolad, S.D., Luo, J., King, S.R., Carlson, T.J., and Fort, D.M. (2000) Antihyperglycemic Acetylenic Glucosides from Bidens pilosa, Planta Med. 66, 82–83.

    PubMed  CAS  Google Scholar 

  168. Mateo, J.J., and Jimenez, M. (2000) Monoterpenes in Grape Juice and Wines, J. Chromatogr. A881, 557–567.

    Article  PubMed  CAS  Google Scholar 

  169. Mateo, J.J., Gentilini, N., Huerta, T., Jimnez, M., and Di Stefano, R. (1997) Fractionation of Glycoside Precursors of Aroma in Grapes and Wine, J. Chromatogr. A 778, 219–224.

    Article  PubMed  CAS  Google Scholar 

  170. Schneider, R., Charrier, F., Moutounet, M., and Baumes, R. (2004) Rapid Analysis of Grape Aroma Glycoconjugates Using Fourier-Transform Intrared Spectrometry and Chemometric Techniques, Anal. Chim. Acta 513, 91–96.

    Article  CAS  Google Scholar 

  171. Ayestarán, B., Guadalupe, Z., and León, D. (2004) Quantification of Major Grape Polysaccharides (Tempranillo v.) Released by Maceration Enzymes During the Fermentation Process, Anal. Chim. Acta 513, 29–39.

    Article  CAS  Google Scholar 

  172. Williams, P.J., Strauss, C.R., Wilson, B., and Massywestropp, R.A. (1982) Novel Monoterpene Disaccharide Glycosides of Vitis vinifera Grapes and Wines, Phytochemistry 21, 2013–2020.

    Article  CAS  Google Scholar 

  173. Sarry, J.-E., and Günata, Z. (2004) Plant and Microbial Glycoside Hydrolases: Volatile Release from Glycosidic Aroma Precursors, Food Chem. 87, 509–521.

    Article  CAS  Google Scholar 

  174. D'Incecco, N., Bartowsky, E., Kassara, S., Lante, A., Spettoli, P., and Henschke, P. (2004) Release of Glycosidically Bound Flavour Compounds of Chardonnay by Oenococcus oeni During Malolactic Fermentation, Food Microbiol. 21, 257–265.

    Article  CAS  Google Scholar 

  175. Whitehurst, R.J. (ed.) (2004) Emulsifiers in Food Technology. Blackwell Publ., Ames, Iowa, p. 264.

    Google Scholar 

  176. De Roode B.M., Franssen, A.C.R., Van Der Padt, A., Boom, R.M. (2003) Perspectives for the Industrial Enzymatic Production of Glycosides, Biotechnol. Prog. 19, 1391–1402.

    Article  PubMed  CAS  Google Scholar 

  177. Zhang, Q.S., Guo, B.N., and Zhang, H.M. (2004) Development and Application of Gemini Surfactants, Prog. Chem. 16, 343–348.

    CAS  Google Scholar 

  178. Hait, S.K., and Moulik, S.P. (2002) Gemini Surfactants: A Distinct Class of Self-Assembling Molecules, Curr. Sci. 82, 1101–1111.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery M. Dembitsky.

About this article

Cite this article

Dembitsky, V.M. Astonishing diversity of natural surfactants: 1. Glycosides of fatty acids and alcohols. Lipids 39, 933–953 (2004). https://doi.org/10.1007/s11745-004-1316-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1316-1

Keywords

Navigation