Skip to main content
Log in

Positional distribution of decanoic acid: Effect on chylomicron and VLDL TAG structures and postprandial lipemia

  • Articles
  • Published:
Lipids

Abstract

Although medium-chain FA (MCFA) are mainly absorbed via the portal venous system, they are also incorporated into chylomicron TAG; therefore, the positional distribution of MCFA in TAG is likely to affect their metabolic fate. We studied chylomicron and VLDL TAG structures, as well as the magnitude of postprandial lipemia, after two oral fat loads containing decanoic acid (10∶0) predominantly at the sn-1(3),2 (MML) or at the sn-1,3 positions (MLM) of TAG in a randomized, double-blind, crossover clinical trial with 10 healthy, normal-weight volunteers. An MS-MS method was used to analyze TAG regioisomers. The position of decanoic acid in chylomicron TAG reflected its position in the TAG ingested, and TAG with none, one, two, or three decanoic acid residues were detected after ingestion of both fats. More (P<0.05) 30∶0 and 38∶1 TAG (acyl carbons:double bonds) and fewer 46∶5, 54∶5 and 54∶4 TAG were found in chylomicrons after ingestion of MML than after MLM. The VLDL TAG composition did not differ between the fat loads but did change (P<0.05) 2 to 6 h after ingestion of both fats. No statistical differences were seen between the fat loads in areas under the plasma, chylomicron, or VLDL TAG response curves or in FFA concentrations. Thus, the positional distribution of MCFA in TAG affects their metabolic, fate, but the magnitude of postprandial lipemia does not seem to be dependent on the positional distribution of MCFA in the ingested fat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACN:

acyl carbon number

DB:

double bond

LCFA:

long-chain FA

LLM:

structured TAG with MCFA predominantly in the sn-1/3 position

LML:

structured TAG with MCFA predominantly in the sn-2 position

MCFA:

medium-chain FA

MLM:

structured TAG with MCFA predominantly at the sn-1,3 positions

MML:

structured TAG with MCFA predominantly at the sn-1(3),2 positions

References

  1. St-Onge, M.-P., and Jones, P.J.H. (2002) Physiological Effects of Medium Chain Triglycerides: Potential Agents in the Prevention of Obesity, J. Nutr. 132, 329–332.

    PubMed  CAS  Google Scholar 

  2. Ikeda, I., Tomari, Y., Sugano, M., Watanabe, S., and Nagata, J. (1991) Lymphatic Absorption of Structured Glycerolipids Containing Medium-Chain Fatty Acids and Linoleic Acid, and Their Effect on Cholesterol Absorption in Rats, Lipids 26, 369–373.

    PubMed  CAS  Google Scholar 

  3. Mu, H., and Høy, C.-E. (2001) Intestinal Absorption of Specific Structured Triacylglycerols, J. Lipid Res. 42, 792–798.

    PubMed  CAS  Google Scholar 

  4. Swift, L.L., Hill, J.O., Peters, J.C., and Greene, H.L. (1990) Medium-Chain Fatty Acids: Evidence for Incorporation into Chylomicron Triglycerides in Humans, Am. J. Clin. Nutr. 52, 834–836.

    PubMed  CAS  Google Scholar 

  5. Carvajal, O., Nakayma, M., Kishi, T., Sato, M., Ikeda, I., Sugano, M., and Imaizumi, K. (2000) Effect of Medium-Chain Fatty Acid Positional Distribution in Dietary Triacylglycerol on Lymphatic Lipid Transport and Chylomicron Composition in Rats, Lipids 35, 1345–1351.

    Article  PubMed  CAS  Google Scholar 

  6. Jensen, M.M., Christensen, M.S., and Høy, C.-E. (1994) Intestinal Absorption of Octanoic, Decanoic, and Linoleic Acids: Effects of Triglyceride Structure, Ann. Nutr. Metab. 38, 104–116.

    Article  PubMed  CAS  Google Scholar 

  7. Carvajal, O., Sakono, M., Sonoki, H., Nakayama, M., Kishi, T., Sato, M., Ikeda, I., Sugano, M., and Imaizumi, K. (2000) Structured Triacylglycerol Containing Medium-Chain Fatty Acids in sn-1(3) Facilitates the Absorption of Dietary Long-Chain Fatty Acids in Rats, Biosci. Biotechnol. Biochem. 64, 793–798.

    Article  PubMed  CAS  Google Scholar 

  8. Yli-Jokipii, K., Kallio, H., Schwab, U., Mykkänen, H., Kurvinen, J.-P., Savolainen, M.J., and Tahvonen, R. (2001) Effects of Palm Oil and Transesterified Palm Oil on Chylomicron and VLDL Triacylglycerol Structures and Postprandial Lipid Response, J. Lipid. Res. 42, 1618–1625.

    PubMed  CAS  Google Scholar 

  9. Yli-Jokipii, K.M., Schwab, U.S., Tahvonen, R.L., Kurvinen, J.-P., Mykkänen, H.M., and Kallio, H.P.T. (2002) Triacylglycerol Molecular Weight and, to a Lesser Extent, Fatty Acid Positional Distribution Affect Chylomicron Triacylglycerol Composition in Women, J. Nutr. 132, 924–929.

    PubMed  CAS  Google Scholar 

  10. Yli-Jokipii, K.M., Schwab, U.S., Tahvonen, R.L., Kurvinen, J.-P., Mykkänen, H.M., and Kallio, H.P.T. (2003) Chylomicron and VLDL Triacylglycerol Structures and Postprandial Lipid Response Induced by Lard and Modified Lard, Lipids 38, 693–703.

    PubMed  CAS  Google Scholar 

  11. Kurvinen, J.-P., Mu, H., Kallio, H., Xu, H., and Høy, C.E. (2001) Regioisomers of Octanoic Acid-Containing Structured Triacylglycerols Analyzed by Tandem Mass Spectormetry Using Ammonia Negative Ion Chemical Ionization, Lipids 36, 1377–1382.

    PubMed  CAS  Google Scholar 

  12. Mu, H., Kurvinen, J.-P., Kallio, H., Xu, X., and Høy, C.-E. (2001) Quantitation of Acyl Migration During Lipase-Catalyzed Acidolysis, and of the Regioisomers of Structured Triacylglycerols Formed, J. Am. Oil Chem. Soc. 78, 959–964.

    CAS  Google Scholar 

  13. Xu, X., Balchen, S., Høy, C.-E., and Adler-Nissen, J. (1998) Production of Specific-Structured Lipids by Enzymatic Interesterification in a Pilot Continuous Enzyme Bed Reactor, J. Am. Oil Chem. Soc. 75, 1573–1579.

    CAS  Google Scholar 

  14. Mu, H., and Høy, C.-E. (2000) Effects of Different Medium-Chain Fatty Acids on Intestinal Absorption of Structured Triacylglycerols, Lipids 35, 83–89.

    Article  PubMed  CAS  Google Scholar 

  15. Ågren, J.J., Valve, R., Vidgren, H., Laakso, M., and Uusitupa, M. (1998) Postprandial Lipemic Response Is Modified by the Polymorphism at Codon 54 of the Fatty Acid-Binding Protein 2 Gene, Arterioscler. Thromb. Vasc. Biol. 18, 1606–1610.

    PubMed  Google Scholar 

  16. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  17. Hamilton, J.G., and Comai, K. (1988) Rapid Separation of Neutral Lipids, Free Fatty Acids and Polar Lipids Using Prepacked Silica Sep-Pak Columns, Lipids 23, 1146–1149.

    PubMed  CAS  Google Scholar 

  18. Kallio, H., and Currie, G. (1993) Analysis of Low Erucic Acid Turnip Rapeseed Oil (Brassica campestris) by Negative Ion Chemical Ionization Tandem Mass Spectrometry. A Method Giving Information on the Fatty Acid Composition in Positions sn-2 and sn-1/3 of Triacylglycerols, Lipids 28, 207–215.

    CAS  Google Scholar 

  19. Laakso, P., and Kallio, H. (1996) Optimization of the Mass Spectrometric Analysis of Triacylglycerols Using Negative-Ion Chemical Ionization with Ammonia, Lipids 31, 33–42.

    Article  PubMed  CAS  Google Scholar 

  20. Kallio, H., and Rua, P. (1994) Distribution of the Major Fatty Acids of Human Milk Between sn-2 and sn-1/3 Positions of Triacylglycerols, J. Am. Oil Chem. Soc. 71, 985–992.

    CAS  Google Scholar 

  21. Kallio, H., and Currie, G. (1997) A Method of Analysis, European Patent 0,566,599.

  22. Kurvinen, J.-P., Rua, P., Sjövall, O., and Kallio, H. (2001) Software (MSPECTRA) for Automatic Interpretation of Triacylglycerol Molecular Mass Distribution Spectra and Collision Induced Dissociation Product Ion Spectra Obtained by Ammonia Negative Ion Chemical Ionization Mass Spectrometry, Rapid Commun. Mass Spectrom. 15, 1084–1091.

    Article  PubMed  CAS  Google Scholar 

  23. Straarup, E.M., and Høy, C.-E. (2000) Structured Lipids Improve Fat Absorption in Normal and Malabsorbing Rats, J. Nutr. 130, 2802–2808.

    PubMed  CAS  Google Scholar 

  24. Bendixen, H., Flint, A., Raben, A., Høy, C.-E., Mu, H., Xu, X., Bartels, E.M., and Astrup, A. (2002) Effect of 3 Modified Fats and a Conventional Fat on Appetite, Energy Intake, Energy Expenditure, and Substrate Oxidation in Healthy Men, Am. J. Clin. Nutr. 75, 47–56.

    PubMed  CAS  Google Scholar 

  25. Pscheidl, E., Hedwig-Geissing, M., Winzer, C., Richter, S., and Rügheimer, E. (1995) Effects of Chemically Defined Structured Lipid Emulsions on Reticuloendothelial System Function and Morphology of Liver and Lung in a Continous Low-Dose Endotoxin Rat Model, J. Parent. Enter. Nutr. 19, 33–40.

    CAS  Google Scholar 

  26. Christensen, M.S., Müllertz, A., and Høy, C.-E. (1995) Absorption of Triglycerides with Defined or Random Structure by Rats with Biliary and Pancreatic Diversion, Lipids 30, 521–526.

    PubMed  CAS  Google Scholar 

  27. Sato, K., Takahashi, T., Takahashi, Y., Shiono, H., Katoh, N., and Akiba, Y. (1999) Treparation of Chylomicrons and VLDL with Monoacid-Rich Triacylglycerol and Characterization of Kinetic Parameters in Lipopotein-Lipase-Mediated Hydrolysis in Chickens, J. Nutr. 129, 126–131.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaisa M. Yli-Jokipii.

About this article

Cite this article

Yli-Jokipii, K.M., Schwab, U.S., Tahvonen, R.L. et al. Positional distribution of decanoic acid: Effect on chylomicron and VLDL TAG structures and postprandial lipemia. Lipids 39, 373–381 (2004). https://doi.org/10.1007/s11745-004-1241-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1241-3

Keywords

Navigation