Skip to main content
Log in

Hepatic Δ9, Δ6, and Δ5 desaturations in non-insulin-dependent diabetes mellitus eSS rats

  • Articles
  • Published:
Lipids

Abstract

Both diabetes mellitus type 1 and diabetes mellitus type 2 are widespread diseases that alter carbohydrate and lipid metabolism. e Stilmann-Salgado (eSS) rats are experimental animals that spontaneously evolve to a state similar to that of young people affected by non-insulin-dependent diabetes mellitus (NIDDM; type 2). Using 6-mon-old eSS rats that, according to the literature [Martinez, S.M., Tarrés, M.C., Montenegro, S, Milo, R., Picena, J.C., Figueroa, N., and Rabasa, S.R. (1988) Spontaneous Diabetes in eSS Rats, Acta Diabetol. Lat. 25, 303–313], had already developed insulin resistance, we investigated the changes evoked on Δ9, Δ6, and Δ5 liver desaturases. The abundance of mRNA and enzymatic activities were measured, as well as the FA composition of liver microsomal lipids. Compared to control rats, the mRNA content and activity of SCD-1 (stearoyl CoA-desaturase, isoform of the Δ9 desaturase) were significantly higher, urase, isoform of the Δ9 desaturase) were significantly higher, whereas the mRNA and activities of Δ6 and Δ5 desaturases were not significantly modified. Correspondingly, the proportion of 18∶1n−9 and the ratios of 18∶1n−9/18∶0 and 16∶1/16∶0 in lipids were significantly increased, whereas the proportion of 20∶4n−6 was unaltered. These effects were found while glycemia was constant or increased. The results are completely opposite those described in insulin-dependent diabetes mellitus (type 1), in which a depression of all the desaturases is found. They suggest that in eSS rats, the activities of the desaturases were not modified by an insulin-resistance effect. Moreover, we suggest that the enhancement of SCD-1 activity might be considered as another typical sign of the NIDDM syndrome, because it has also been found in other animal models of NIDDM, for example, the ones evoked by the sucrose-rich diet and in the Zucker rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABCA-1:

ATP binding cassette transporter A-1

eSS rats:

e Stilmann-Salgado rats

IDDM:

insulin-dependent diabetes mellitus

NIDDM:

non-insulin-depdent diabetes mellitis

PtdCho:

phosphatidylcholine

SCD-1:

steroyl-CoA desaturase-1

References

  1. McIntosh, C.H.S., and Pederson, R.A. (1999) Non-Insulin-Dependent Animal Models of Diabetes Mellitus, in Experimental Models of Diabetes (McNeill, J.H., ed.), pp. 337–398, CRC Press, Boca Ratón.

    Google Scholar 

  2. Martínez, S.M., Tarrés, M.C., Picena, J.C., Montenegro, S.M., Gagliardino, J.J., Gómez Dumm, C.L.A., D'Ottavio, A.E., Vaves, A., and Rabasa, S.L. (1993) eSS Rats, an Animal Model for the Study of Spontaneous Non-Insulin Dependent Diabetes, in Lessons from Animal Diabetes IV (Shafrir, E., ed.), pp. 75–90, Smith-Gordon, London.

    Google Scholar 

  3. Lombardo, J.B., Chicco, A., Mocchiuti, A., de Rodi, M.A., Nusimovich, B., and Gutman, R. (1983) Effect of Sucrose Diet on Insulin Secretion in vivo and in vitro and on Triglyceride Storage and Mobilisation of the Heart of Rats, Horm. Metabol. Res. 15, 69–75.

    Article  CAS  Google Scholar 

  4. Gómez Dumm, I.N.T. de, and Igal, R.A. (1993) Biosynthesis of Polyunsaturated Fatty Acids in Spontaneously Diabetic Rats, Med. Sci. Res. 21, 131–133.

    Google Scholar 

  5. Gellhorn, A., and Benjamin, W. (1964) The Intracellular Localization of an Enzymatic Defect of Lipid Metabolism in Diabetic Rats, Biochim. Biophys. Acta 84, 167–175.

    PubMed  CAS  Google Scholar 

  6. Mercuri, O., Peluffo, R.O., and Brenner, R.R. (1966) Depression of Microsomal Desaturation of Linoleic to γ-Linolenic Acid in the Alloxan Diabetic Rat, Biochim. Biophys. Acta 116, 409–411.

    PubMed  CAS  Google Scholar 

  7. Martínez, S.M., Tarrés, M.C., Montenegro, S., Milo, R., Picena, J.C., Figueroa, N., and Rabasa, S.R. (1988) Spontaneous Diabetes in eSS Rats, Acta Diabetol. Lat. 25, 303–313.

    PubMed  Google Scholar 

  8. Gómez Dumm, C.L.A., Semino, M.C., and Gagliardino, J.J. (1990) Sequential Morphological Changes in Pancreatic Islets of Spontaneous Diabetic Rats, Pancreas 5, 533–539.

    Article  PubMed  Google Scholar 

  9. Gómez Dumm, I.N.T. de, Montenegro, S., Tarrés, M.C., Martínez, S.M., and Igal, R.A. (1998) Early Lipid Alterations in Spontaneously Diabetic Rats, Acta Physiol. Pharmacol. Therap. Latinoam. 48, 228–234.

    Google Scholar 

  10. Brenner, R.R., Rimoldi, O.J., Lombardo, Y.B., González, M.S., Bernasconi, A.M., Chicco, A., and Basabe, J.C. (2003) Desaturase Activities in a Rat Model of Insulin-Resistance Diabetes Mellitus Induced by a Sucrose-Rich Diet, Lipids 38, 733–742.

    PubMed  CAS  Google Scholar 

  11. Brenner, R.R., Bernasconi, A.M., and Garda, H.A. (2000) Effect of Experimental Diabetes on the Fatty Acid Composition, Molecular Species of Phosphatidyl-choline and Physical Properties of Hepatic Microsomal Membranes, Prostaglandins Leukot. Essent. Fatty Acids 63, 167–176.

    Article  PubMed  CAS  Google Scholar 

  12. Brenner, R.R. (2003), Hormonal Modulation of Δ6 and Δ5 Desaturases: Case of Diabetes, Prostaglandins Leukot. Essent. Fatty Acids 68, 151–162.

    Article  PubMed  CAS  Google Scholar 

  13. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning, in A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  14. Catalá, A., Nervi, A.M., and Brenner, R.R. (1975) Separation of a Protein Factor Necessary for the Oxidative Desaturation of Fatty Acids in the Rat, J. Biol. Chem. 250, 7481–7484.

    PubMed  Google Scholar 

  15. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  16. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  17. Rimoldi, O.J., Finarelli, G.S., and Brenner, R.R. (2001) Effects of Diabetes and Insulin on Hepatic Δ6 Desaturase Gene Expression, Biochem. Biophys. Res. Commun. 283, 323–326.

    Article  PubMed  CAS  Google Scholar 

  18. Waters, K.M., and Ntambi, J.M. (1994) Insulin and Dietary Fructose Induce Stearoyl-CoA Desaturase 1 Gene Expression in Liver Diabetic Mice, J. Biol. Chem. 269, 27773–27777.

    PubMed  CAS  Google Scholar 

  19. Lippiello, P.M., Holloway, C.T., Garfield, S.A., and Holloway, P.W. (1979) The Effects of Estradiol on Stearyl-CoA Desaturase Activity and Microsomal Membrane Properties in Rooster Liver, J. Biol. Chem. 254, 2004–2009.

    PubMed  CAS  Google Scholar 

  20. Attie, A.D., Krauss, R.M., Gray-Keller, M.P., Brownlie, A., Miyazaki, M., Kastelein, J.J., Lusis, A.J., Stalenhoef, A.F.H., Stoehr, J.P., Hayden, M.R., and Ntambi, J.M. (2002) Relationship Between Steary-CoA Desaturase Activity and Plasma Triglycerides in Human and Mouse Hypertriglyceridemia, J. Lipid Res. 43, 1899–1907.

    Article  PubMed  CAS  Google Scholar 

  21. Listenberger, L.L., Han, X., Lewis, S.E., Cases, S., Farese, R.V., Jr., Ory, D.S., and Schaffer, J.E. (2003) Triglyceride Accumulation Protects Against Fatty Acid-Induced Lipotoxicity, Proc. Natl. Acad. Sci. USA 100, 3077–3082.

    Article  PubMed  CAS  Google Scholar 

  22. Sun, Y., Hao, M., Luo, Y., Liang, C., Silver, D.L., Cheng, C., Maxfield, F.R., and Tall, A.R. (2003) Stearoyl-CoA Desaturase Inhibits ATP-Binding Cassette Transporter A-1-Mediated Cholesterol Efflux and Modulates Membrane Domain Structure, J. Biol. Chem. 278, 5813–5820.

    Article  PubMed  CAS  Google Scholar 

  23. Gellhorn, A., and Benjamin, W. (1965) Lipid Biosynthesis in Adipose Tissue During Aging and Diabetes, Ann. N.Y. Acad. Sci. 131, 344–356.

    PubMed  CAS  Google Scholar 

  24. Jones, B.H., Maher, M.A., Banz, W.J., Zemel, M.B., Whelan, J., Smith, P.J., and Mustaid, N. (1996) Adipose Tissue Stearoyl-CoA Desaturase mRNA Is Increased by Obesity and Decreased by Polyunsaturated Fatty Acids, Am. J. Physiol. Endocrinol. Metab. 271, E44-E49.

    CAS  Google Scholar 

  25. Bassilian, S., Ahmed, S., Lim, S.K., Boros, L.G., Mao, C.S., and Lee, W.N.P. (2002) Loss of Regulation of Lipogenesis in Zucker Diabetic Rat. II. Changes in Stearate and Oleate Synthesis, Am. J. Physiol. Endocrinol. Metab. 282, E507-E513.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo R. Brenner.

About this article

Cite this article

Montanaro, M.A., Rimoldi, O.J., Igal, R.A. et al. Hepatic Δ9, Δ6, and Δ5 desaturations in non-insulin-dependent diabetes mellitus eSS rats. Lipids 38, 827–832 (2003). https://doi.org/10.1007/s11745-003-1132-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1132-7

Keywords

Navigation