Skip to main content
Log in

Differential modulation of cytosolic lipases activities in liver and adipose tissue by high-carbohydrate diets

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Several studies have demonstrated that a high-fructose (FRUC) diet induces metabolic and haemodynamic abnormalities, known as the metabolic syndrome, which are characterised by obesity, glucose intolerance, insulin resistance, dyslipidaemia and hypertension. In this study, the effect of a FRUC diet (60 % fructose) for 8 weeks on the metabolism of lipids in liver and epididymal adipose tissue from Wistar rats was compared with the AIN-93M diet and the effects of the AIN-93M diet were compared with a chow diet. The FRUC diet induced marked increases in both hepatocyte lipid droplet volume and postprandial serum levels of triacylglycerol (TAG), but reduced the postprandial serum levels of insulin. The AIN-93M diet induced marked increases in the hepatocyte lipid droplet volume and the serum levels of insulin, without affecting the serum levels of TAG. We found that isocaloric substitution of cornstarch, dextrinised cornstarch and sucrose (AIN-93M diet) for fructose did not affect the hepatic VLDL-TAG secretion and adipose tissue glucose uptake, lipolysis and cytosolic lipases activities in rats. However, the high-fructose diet induced a severe steatosis in liver accompanied by a decrease in cytosolic lipases activities. In adipose tissue, the FRUC diet induced a decrease in the lipoprotein lipase activity, and an increase in lipogenesis. FRUC and AIN-93M diets induced changes in lipid homeostasis in liver and adipose tissue by distinct biochemical mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Livesey, R. Taylor, Fructose consumption and consequences for glycation, plasma triacylglycerol, and body weight: meta-analyses and meta-regression models of intervention studies. Am. J. Clin. Nutr. 88, 1419–1437 (2008)

    CAS  PubMed  Google Scholar 

  2. V. Ha, J.L. Sievenpiper, R.J. de Souza, L. Chiavaroli, D.D. Wang, A.I. Cozma, A. Mirrahimi, M.E. Yu, A.J. Carleton, M. Dibuono, A.L. Jenkins, L.A. Leiter, T.M. Wolever, J. Beyene, C.W. Kendall, D.J. Jenkins, Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension 59, 787–795 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. J.L. Sievenpiper, R.J. de Souza, A. Mirrahimi, M.E. Yu, A.J. Carleton, J. Beyene, L. Chiavaroli, M. Di Buono, A.L. Jenkins, L.A. Leiter, T.M. Wolever, C.W. Kendall, D.J. Jenkins, Effect of fructose on body weight in controlled feeding trials: a systematic review and meta-analysis. Ann. Intern. Med. 156, 291–304 (2012)

    Article  PubMed  Google Scholar 

  4. S. Chiu, J.L. Sievenpiper, R.J. de Souza, A.I. Cozma, A. Mirrahimi, A.J. Carleton, V. Ha, M. Di Buono, A.L. Jenkins, L.A. Leiter, T.M. Wolever, A.C. Don-Wauchope, J. Beyene, C.W. Kendall, D.J. Jenkins, Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. Eur. J. Clin. Nutr. 68, 416–423 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D.D. Wang, J.L. Sievenpiper, R.J. de Souza, L. Chiavaroli, V. Ha, A.I. Cozma, A. Mirrahimi, M.E. Yu, A.J. Carleton, M. Di Buono, A.L. Jenkins, L.A. Leiter, T.M. Wolever, J. Beyene, C.W. Kendall, D.J. Jenkins, The effects of fructose intake on serum uric acid vary among controlled dietary trials. J. Nutr. 142, 916–923 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D.D. Wang, J.L. Sievenpiper, R.J. de Souza, A.I. Cozma, L. Chiavaroli, V. Ha, A. Mirrahimi, A.J. Carleton, M. Di Buono, A.L. Jenkins, L.A. Leiter, T.M. Wolever, J. Beyene, C.W. Kendall, D.J. Jenkins, Effect of fructose on postprandial triacylglycerols: a systematic review and meta-analysis of controlled feeding trials. Atherosclerosis 232, 125–133 (2014)

    Article  Google Scholar 

  7. A.I. Cozma, J.L. Sievenpiper, R.J. de Souza, L. Chiavaroli, V. Ha, D.D. Wang, A. Mirrahimi, M.E. Yu, A.J. Carleton, M. Di Buono, A.L. Jenkins, L.A. Leiter, T.M. Wolever, J. Beyene, C.W. Kendall, D.J. Jenkins, Effect of fructose on glycemic control in diabetes: a systematic review and meta-analysis of controlled feeding trial. Diabetes Care 35, 1611–1620 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. J.L. Sievenpiper, A.J. Carleton, S. Chatha, H.Y. Jiang, R.J. de Souza, J. Beyene, C.W. Kendall, D.J. Jenkins, Heterogeneous effects of fructose on blood lipids in individuals with type 2 diabetes: systematic review and meta-analysis of experimental trials in humans. Diabetes Care 32, 1930–1937 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. F. Ameer, L. Scandiuzzi, S. Hasnain, H. Kalbacher, N.De Zaidi, novo lipogenesis in health and disease. Metabolism 63, 895–902 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. V.E. Chaves, D. Frasson, N.H. Kawashita, Several agents and pathways regulate lipolysis in adipocytes. Biochimie 93, 1631–1640 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. Y. Kawano, D.E. Cohen, Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J. Gastroenterol. 48, 434–441 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Lass, R. Zimmermann, G. Haemmerle, M. Riederer, G. Schoiswohl, M. Schweiger, P. Kienesberger, J.G. Strauss, G. Gorkiewicz, R. Zechner, Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab. 3, 309–319 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. X. Yang, X. Lu, M. Lombès, G.B. Rha, Y.I. Chi, T.M. Guerin, E.J. Smart, J. Liu, The G0/G1 switch Gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab. 11, 194–205 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J.W. Wu, S.P. Wang, F. Alvarez, S. Casavant, N. Gauthier, L. Abed, K.G. Soni, G. Yang, G.A. Mitchell, Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis. Hepatology 54, 122–132 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. K.T. Ong, M.T. Mashek, S.Y. Bu, A.S. Greenberg, D.G. Mashek, Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning. Hepatology 53, 116–126 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. B.N. Reid, G.P. Ables, O.A. Otlivanchik, G. Schoiswohl, R. Zechner, W.S. Blaner, I.J. Goldberg, R.F. Schwabe, S.C. Chua Jr, L.S. Huang, Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis. J. Biol. Chem. 283, 13087–13099 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. L. Rui, Energy metabolism in the liver. Compr. Physiol. 4, 177–197 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  18. L. Tappy, K.A. Lê, Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 90, 23–46 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. J.B. Moore, P.J. Gunn, B.A. Fielding, The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease. Nutrients 6, 5679–5703 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J. Folch, M. Lees, G.A. Stanley, A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957)

    CAS  PubMed  Google Scholar 

  21. H.G. Windmueller, A.E. Spaeth, Perfusion in situ with tritium oxide to measure hepatic lipogenesis and lipid secretion. Normal and orotic acid-fed rats. J. Biol. Chem. 241, 2891–2899 (1966)

    CAS  PubMed  Google Scholar 

  22. M. Rodbell, Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J. Biol. Chem. 239, 375–380 (1964)

    CAS  PubMed  Google Scholar 

  23. L.M. Botion, A. Green, Long-term regulation of lipolysis and hormone-sensitive lipase by insulin and glucose. Diabetes 48, 1691–1697 (1999)

    Article  CAS  PubMed  Google Scholar 

  24. S. Gasic, A. Green, Gi down-regulation and heterologous desensitization in adipocytes after treatment with α agonist UK 14304. Biochem. Pharmacol. 49, 785–790 (1995)

    Article  CAS  PubMed  Google Scholar 

  25. P.H. Iverius, A.M. Ostlund-Lindqvist, Preparation, characterization, and measurement of lipoprotein lipase. Methods Enzymol. 129, 691–704 (1986)

    Article  CAS  PubMed  Google Scholar 

  26. P. Nilsson-Ehle, M.C. Schotz, A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J. Lipid Res. 17, 536–541 (1976)

    CAS  PubMed  Google Scholar 

  27. P. Belfrage, M. Vaughan, Simple liquid-liquid partition system for isolation of labeled oleic acid from mixtures with glycerides. J. Lipid Res. 10, 341–344 (1969)

    CAS  PubMed  Google Scholar 

  28. E. Wei, W. Gao, R. Lehner, Attenuation of adipocyte triacylglycerol hydrolase activity decreases basal fatty acid efflux. J. Biol. Chem. 282, 8027–8035 (2007)

    Article  CAS  PubMed  Google Scholar 

  29. V.W. Dolinsky, D.N. Douglas, R. Lehner, D.E. Vance, Regulation of the enzymes of microsomal triacylglycerol lipolysis and re-esterification by the glucocorticoid dexamethasone. Biochem. J. 378, 967–974 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  CAS  PubMed  Google Scholar 

  31. T. Mita, M. Furuhashi, S. Hiramitsu, J. Ishii, K. Hoshina, S. Ishimura, T. Fuseya, Y. Watanabe, M. Tanaka, K. Ohno, H. Akasaka, H. Ohnishi, H. Yoshida, S. Saitoh, K. Shimamoto, T. Miura, FABP4 is secreted from adipocytes by adenyl cyclase-PKA and guanylyl cyclase-PKG-dependent lipolytic mechanisms. Obesity 23, 359–367 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. P.R. Manna, J. Cohen-Tannoudji, R. Counis, C.W. Garner, I. Huhtaniemi, F.B. Kraemer, D.M. Stocco, Mechanisms of action of hormone-sensitive lipase in mouse Leydig cells: its role in the regulation of the steroidogenic acute regulatory protein. J. Biol. Chem. 288, 8505–8518 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Z. Wan, S. Matravadia, G.P. Holloway, D.C. Wright, FAT/CD36 regulates PEPCK expression in adipose tissue. Am. J. Physiol. Cell Physiol. 304, C478–C484 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. J. Grisouard, E. Bouillet, K. Timper, T. Radimerski, K. Dembinski, D.M. Frey, R. Peterli, H. Zulewski, U. Keller, B. Müller, M. Christ-Crain, Both inflammatory and classical lipolytic pathways are involved in lipopolysaccharide-induced lipolysis in human adipocytes. Innate Immun. 18, 25–34 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. J. Iglesias, J. Lamontagne, H. Erb, S. Gezzar, S. Zhao, E. Joly, V.L. Truong, K. Skorey, S. Crane, Murthy Madiraju SR, Prentki M. Simplified assays of lipolysis enzymes for drug discovery and specificity assessment of known inhibitors. J. Lipid Res. 57(1), 131–141 (2016)

    Article  CAS  PubMed  Google Scholar 

  36. G.G. Muccioli, G. Labar, D.M. Lambert, CAY10499, novel monoglyceride lipase inhibitor evidenced by an expeditious MGL assay. ChenBioChem 9(16), 2704–2710 (2008)

    Article  CAS  Google Scholar 

  37. W.Z. Hassid, S. Abraham, Determination of glycogen with anthrone reagent, in Methods of enzymology III, ed. by S.P. Colowick, N.O. Kaplan (Academic Press, New York, 1957), pp. 35–36

    Google Scholar 

  38. C. Taghibiglou, A. Carpentier, S.C. Van Iderstine, B. Chen, D. Rudy, A. Aiton, G.F. Lewis, K. Adeli, Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. J. Biol. Chem. 275, 8416–8425 (2000)

    Article  CAS  PubMed  Google Scholar 

  39. J. Busserolles, E. Gueux, E. Rock, C. Demigné, A. Mazur, Y. Rayssiguier, Oligofructose protects against the hypertriglyceridemic and pro-oxidative effects of a high fructose diet in rats. J. Nutr. 133, 1903–1908 (2003)

    CAS  PubMed  Google Scholar 

  40. R. Ragheb, A.M. Medhat, G.M. Shanab, D.M. Seoudi, I.G. Fantus, Links between enhanced fatty acid flux, protein kinase C and NFkappaB activation, and apoB-lipoprotein production in the fructose-fed hamster model of insulin resistance. Biochem. Biophys. Res. Commun. 370, 134–139 (2008)

    Article  CAS  PubMed  Google Scholar 

  41. I. Hininger-Favier, R. Benaraba, S. Coves, R.A. Anderson, A.M. Roussel, Green tea extract decreases oxidative stress and improves insulin sensitivity in an animal model of insulin resistance, the fructose-fed rat. J. Am. Coll. Nutr. 28, 355–361 (2009)

    Article  CAS  PubMed  Google Scholar 

  42. I. Cornaciu, A. Boeszoermenyi, H. Lindermuth, H.M. Nagy, I.K. Cerk, C. Ebner, B. Salzburger, A. Gruber, M. Schweiger, R. Zechner, A. Lass, R. Zimmermann, M. Oberer, The minimal domain of adipose triglyceride lipase (ATGL) ranges until leucine 254 and can be activated and inhibited by CGI-58 and G0S2, respectively. PLoS One 6(10), e26349 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. M. Schweiger, R. Schreiber, G. Haemmerle, A. Lass, C. Fledelius, P. Jacobsen, H. Tornqvist, R. Zechner, R. Zimmermann, Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J. Biol. Chem. 281, 40236–40241 (2006)

    Article  CAS  PubMed  Google Scholar 

  44. J.B. Young, L. Landsberg, Stimulation of the sympathetic nervous system during sucrose feeding. Nature 269, 615–617 (1977)

    Article  CAS  PubMed  Google Scholar 

  45. J.B. Young, J. Weiss, N. Boufath, Effects of dietary monosaccharides on sympathetic nervous system activity in adipose tissues of male rats. Diabetes 53, 1271–1278 (2004)

    Article  CAS  PubMed  Google Scholar 

  46. V.E. Chaves, D. Frasson, M.E. Martins-Santos, R.P. Boschini, M.A. Garófalo, W.T. Festuccia, I.C. Kettelhut, R.H. Migliorini, Glyceroneogenesis is reduced and glucose uptake is increased in adipose tissue from cafeteria diet-fed rats independently of tissue sympathetic innervation. J. Nutr. 136, 2475–2480 (2006)

    CAS  PubMed  Google Scholar 

  47. M. Van Epps-Fung, J. Williford, A. Wells, R.W. Hardy, Fatty acid-induced insulin resistance in adipocytes. Endocrinology 138, 4338–4345 (1997)

    PubMed  Google Scholar 

  48. C. Yu, Y. Chen, G.W. Cline, D. Zhang, H. Zong, Y. Wang, R. Bergeron, J.K. Kim, S.W. Cushman, G.J. Cooney, B. Atcheson, M.F. White, E.W. Kraegen, G.I. Shulman, Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J. Biol. Chem. 277, 50230–50236 (2002)

    Article  CAS  PubMed  Google Scholar 

  49. B. Maiztegui, M.I. Borelli, M.A. Raschia, H. Del Zotto, J.J. Gagliardino, Islet adaptive changes to fructose-induced insulin resistance: beta-cell mass, glucokinase, glucose metabolism, and insulin secretion. J. Endocrinol. 200, 139–149 (2009)

    Article  CAS  PubMed  Google Scholar 

  50. H.Y. Koo, M. Miyashita, B.H. Cho, M.T. Nakamura, Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus. Biochem. Biophys. Res. Commun. 390, 285–289 (2009)

    Article  CAS  PubMed  Google Scholar 

  51. L.M. Botion, M.N. Brito, N.A. Brito, S.R. Brito, I.C. Kettelhut, R.H. Migliorini, Glucose contribution to in vivo synthesis of glyceride-glycerol and fatty acids in rats adapted to a high-protein, carbohydrate-free diet. Metabolism 47, 1217–1221 (1998)

    Article  CAS  PubMed  Google Scholar 

  52. V.E. Chaves, D. Frasson, M.A. Garófalo, L.C. Navegantes, R.H. Migliorini, I.C. Kettelhut, Increased glyceride-glycerol synthesis in liver and brown adipose tissue of rat: in vivo contribution of glycolysis and glyceroneogenesis. Lipids 47, 773–780 (2012)

    Article  CAS  PubMed  Google Scholar 

  53. B.W. Huang, M.T. Chiang, H.T. Yao, W. Chiang, The effect of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes Obes. Metab. 6, 120–126 (2004)

    Article  CAS  PubMed  Google Scholar 

  54. A.H. Stark, B. Timar, Z. Madar, Adaptation of Sprague Dawley rats to long-term feeding of high fat or high fructose diets. Eur. J. Nutr. 39, 229–234 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank to the fellowship students of Undergraduate Research Program from Federal University of São João del-Rei, M.T.M. Lacerda and A.B. Bilheiro, for their help in determining the rate of the VLDL-TAG secretion and the liver glycogen concentration, respectively. This study was supported by Fundação de Amparo à Pesquisa de Minas Gerais (APQ-00299-12) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (471544/2012-4). A.H.R. received a fellowship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). C.C.L.M., E.G.M. and L.M.S.C. received a fellowship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author contributions

All authors contributed to the development, analysis and drafting of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valéria Ernestânia Chaves.

Ethics declarations

Conflicts of interest

The authors report no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, A.H., Moreira, C.C.L., Mario, É.G. et al. Differential modulation of cytosolic lipases activities in liver and adipose tissue by high-carbohydrate diets. Endocrine 53, 423–432 (2016). https://doi.org/10.1007/s12020-016-0886-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-0886-9

Keywords

Navigation