Skip to main content
Log in

Effect of Polar Organic Solvents on Self-Aggregation of Some Cationic Monomeric and Dimeric Surfactants

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Surface and micellization behavior of some cationic monomeric surfactants, viz., cetyldiethylethanolammonium bromide (CDEEAB), cetyldimethylethanolammonium bromide (CDMEAB), tetradecyldiethylethanolammonium bromide (TDEEAB) and dimeric surfactants, i.e., alkanediyl-α, ω-bis(dimethylhexadecylammonium bromide) (C16-s-C16, 2Br where s = 4, 12), butanediyl-1,4-bis(dimethyldodecylammonium bromide (C12-4-C12, 2Br) and 2-butanol-1,4-bis(dimethyldodecylammonium bromide) (C12-4(OH)-C12, 2Br), was studied in water-organic solvents [10 and 20 % v/v ethylene glycol (EG) and diethylene glycol (DEG)] by conductivity, surface tension and steady-state fluorescence methods at 300 K. The main focus of the present work is on the study of the effect of organic solvents on the critical micelle concentration (CMC), Gibbs free energy of micellization (ΔG°m), Gibbs free energy of transfer (ΔG°trans), Gibbs adsorption energy (ΔG°ads) and some interfacial parameters such as the surface excess concentration (Γmax), minimum area per surfactant molecule (A min) and surface pressure (π CMC). The aggregation number (N agg) and Stern-Volmer quenching constant (K SV) were also determined by the steady-state fluorescence method. It was observed that N agg decreased with increasing volume percent of organic solvent. The results exhibited an increase in CMC in water-organic solvents as compared to the respective surfactants in pure water. The negative values of ΔG°m and ΔG°ads indicate a spontaneous micellization process. The thermodynamics of micellization revealed that the micellization-reducing efficiency of glycols increases with the concentration and the number of ethereal oxygens in the glycol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pape J, Vikse KL, Janusson E, Taylor N, McIndoe JS (2015) Solvent effects on surface activity of aggregate ions in electrospray ionization. Int J Mass Spectrom 122:185–196

    Google Scholar 

  2. Chauhan V, Singh S, Mishra R, Kaur G (2014) Synthesis and bio-physicochemical properties of amide-functionalized N-methylpiperazinium surfactants. J Colloid Interface Sci 436:122–131

    Article  CAS  Google Scholar 

  3. Yousuf S, Akram M, Kabir-ud-Din (2014) Effect of salt additives on the aggregation behavior and morphology of 14-E2-14. J Colloids Surf A Phys Chem Eng Aspects 463:8–17

    Article  CAS  Google Scholar 

  4. Ru J, Hua Y, Li J, Xu C, Li Y, Wang D, Qi C, Jie Y (2014) Effects of existence form and concentration of PbO on the conductivity of choline chloride–urea deep eutectic solvent. J Mol Liq 199:208–214

    Article  CAS  Google Scholar 

  5. Quagliotto P, Barbero N, Barolo C, Artuso E, Compari C, Fisicaro E, Viscardi G (2009) Synthesis and properties of cationic surfactants with tuned hydrophobicity. J Colloid Interface Sci 340:269–275

    Article  CAS  Google Scholar 

  6. Yu D, Tian M, Fan Y, Ji G, Wang Y (2012) Aggregate transitions in aqueous solution of sodium dodecylsulphate with a “gemini-type” organic salt. J Phys Chem 116:6425–6430

    Article  CAS  Google Scholar 

  7. Anand U, Jash C, Mukherjee S (2011) Spectroscopic determination of critical micelle concentration in aqueous and non-aqueous media using a non-invasive method. J Colloid Interface Sci 364:400–406

    Article  CAS  Google Scholar 

  8. Tiwari AK, Sonu SK Saha (2014) Aggregation properties and thermodynamics of micellization of gemini surfactants with diethyl ether spacer in water and water–organic solvent mixed media. J Chem Thermodyn 70:24–32

    Article  CAS  Google Scholar 

  9. Rodriguez A, Graciani MM, Angulo M, Moya ML (2007) Effects of organic solvent addition on the aggregation and micellar growth of cationic dimeric surfactant 12-3-12, 2Br. Langmuir 23:11496–11505

    Article  CAS  Google Scholar 

  10. Ge Y, Tai S, Tian F, Li D, Jiang F, Liu Y, Gao Z (2012) Synthesis of three novel anionic gemini surfactants and comparative studies of their assemble behavior in the presence of bovine serum albumin. Langmuir 28:5913–5920

    Article  CAS  Google Scholar 

  11. Negm NA, Ell- Hashash MA, Mohammed DE, Marquis JM, Khowdiary MM (2013) Gemini cationic surfactants: synthesis and influence of chemical structure on the surface activity. J Surfactant Deterg 16:733–738

    Article  CAS  Google Scholar 

  12. Ray GB, Chakraborty I, Ghosh S, Moulik SP, Palepu R (2005) Self-aggregation of alkyltrimethylammonium bromides (C10-, C12-, C14- and C16TAB) and their binary mixtures in aqueous medium : a critical and comprehensive assessment of interfacial behavior and bulk properties with reference to two types of micelle formation. Langmuir 21:10958–10967

    Article  CAS  Google Scholar 

  13. Shang Y, Wang T, Han X, Peng C, Liu H (2010) Effect of ionic liquids c n mimbr on properties of gemini surfactant 12-3-12 aqueous solution. Ind Eng Chem Res 49:8852–8857

    Article  CAS  Google Scholar 

  14. Khan F, Siddiqui US, Rub MA, Khan IA, Kabir-ud-Din (2014) Micellization and interfacial properties of cationic gemini surfactant (12-4-12) in the presence of additives in aqueous electrolyte solution: a tensiometric study. J Mol Liq 191:29–36

    Article  CAS  Google Scholar 

  15. Elmasry MS, Hassan WS, Elazazy MS (2014) Self-association and thermodynamic behavior of etilefrine hydrochloride in aqueous electrolyte solution. J Chem Thermodyn 79:76–83

    Article  CAS  Google Scholar 

  16. Negm NA, Tawfik SM (2014) Characterization, surface properties and biological activity of some synthesized anionic surfactants. J Ind Eng Chem 20:4463–4472

    Article  CAS  Google Scholar 

  17. Das S, Mondal S, Ghosh S (2013) Physicochemical studies on the micellization of cationic, anionic, and nonionic surfactants in water–polar organic solvent mixtures. J Chem Eng Data 58:2586–2595

    Article  CAS  Google Scholar 

  18. Naorem H, Devi S (2006) Conductometric and surface tension studies on the micellization of some cationic surfactants in water–organic solvent mixed media. J Suface Sci Technol 22:89–100

    CAS  Google Scholar 

  19. Rodriguez A, Graciani MM, Moya M (2008) Effects of addition of polar organic solvents on micellization. Langmuir 24:12785–12792

    Article  CAS  Google Scholar 

  20. Koya P, Kabir-ud-Din (2010) Effects of solvent media and temperature on the self-aggregation of cationic dimeric surfactant 14-6-14, 2Br studied by conductometric and fluorescence techniques. Langmuir 26:7905–7914

    Article  Google Scholar 

  21. Tanford C (1973) The hydrophobic effect. Wiley, New York

    Google Scholar 

  22. Das S, Naskar B, Ghosh S (2014) Influence of temperature and organic solvents (isopropanol and 1,4-dioxane) on the micellization of cationic gemini surfactant (14-4-14). Soft Matter 10:2863–2875

    Article  CAS  Google Scholar 

  23. Manna K, Panda AK (2011) Physicochemical studies on the interfacial and micellization behavior of CTAB in aqueous polyethylene glycol media. J Surfactant Deterg 14:563–576

    Article  CAS  Google Scholar 

  24. Kabir-ud-Din, Siddiqui US, Kumar S, Dar AA (2006) Micellization of monomeric and dimeric (gemini) surfactants in polar nonaqueous-water-mixed solvents. J Colloid Polym Sci 284:807–812

    Article  CAS  Google Scholar 

  25. Gracie K, Turner D, Palepu R (1996) Thermodynamic properties of micellization of sodium dodecyl sulfate in binary mixtures of ethylene glycol with water. Can J Chem 74:1616–1626

    Article  CAS  Google Scholar 

  26. Kabir-ud-Din, Koya PA, Khan ZA (2010) Conductometric studies of micellization of gemini surfactant pentamethylene-1,5-bis(tetradecyldimethylammonium bromide) in water and water–organic solvent mixed media. J Colloid Interface Sci 342:340–347

    Article  CAS  Google Scholar 

  27. Kolay S, Ghosh KK, MacDonald A, Moulins J, Palepu RM (2008) Micellization of alkyltriphenylphosphonium bromides in ethylene glycol and diethylene glycol + water mixtures: thermodynamic and kinetic investigation. J Sol Chem 37:59–72

    Article  CAS  Google Scholar 

  28. Deepti KK Ghosh (2010) Micellization of cetyldiethylethanolammonium bromide in mixed aqueous organic solvents. J Disper Sci Technol 31:1249–1253

    Article  Google Scholar 

  29. Kumar B, Tikariha D, Ghosh KK, Quagliotto P (2012) Effect of short chain length alcohols on micellization behavior of cationic gemini and monomeric surfactants. J Mol Liq 172:81–87

    Article  CAS  Google Scholar 

  30. Chavda S, Bahadur P (2013) Thermodynamic study of a cationic surfactant in aqueous solution containing ethylene glycol and its oligomers: effect of number of ethereal oxygen atoms in glycols molecule. J Disper Sci Technol 34:84–91

    Article  CAS  Google Scholar 

  31. Bakshi MS (1993) Micelle formation by anionic and cationic surfactants in binary aqueous solvents. J Chem Soc Faraday Trans 89:4323–4326

    Article  CAS  Google Scholar 

  32. Bakshi MS (1997) Cetylpyridinium chloride–tetradecyltrimethylammonium bromide mixed micelles in ethylene glycol–water and diethylene glycol–water mixtures. J Chem Soc Faraday Trans 93:4005–4008

    Article  Google Scholar 

  33. Sharma V, Borse M, Aswal VK, Pokhriyal NK, Joshi JV, Goyal PS, Devi S (2004) Synthesis characterization and SANS studies of novel alkanediyl a, w-bis(alkyl mono methylethanolammonium bromide) cationic dimeric surfactants. J Colloid Interface Sci 277:450–455

    Article  CAS  Google Scholar 

  34. Tikariha D, Ghosh KK, Barbero N, Quagliotto P, Ghosh S (2011) Micellization properties of mixed cationic gemini and cationic monomeric surfactants in aqueous-ethylene glycol mixture. J Colloids Surf A Phys chem Eng Aspects 381:61–69

    Article  CAS  Google Scholar 

  35. Tiwari AK, Sonu, Saha SK (2014) Effect of hydroxyl group substituted spacer group of cationic gemini surfactants on solvation dynamics and rotational relaxation of coumarin-480 in aqueous micelles. J Phys Chem B 118:3582–3592

    Article  CAS  Google Scholar 

  36. Tiwari AK, Sonu M Sowmiya, Saha Subit K (2012) Micellization behavior of gemini surfactants with hydroxyl substituted spacers in water and water-organic solvent mixed media: the spacer effect. J Mol Liq 167:18–27

    Article  CAS  Google Scholar 

  37. Rodriguez A, Graciani MM, Angulo M, Moya ML (2006) Effects of ethylene glycol addition on the aggregation and micellar growth of gemini surfactants. Langmuir 22:9519–9525

    Article  CAS  Google Scholar 

  38. Lakra J, Tikariha D, Yadav T, Satnami ML, Ghosh KK (2013) Study of solubility efficiency of polycyclic aromatic hydrocarbons in single surfactant systems. J Surfactant Deterg 16:957–965

    Article  CAS  Google Scholar 

  39. Moore SE, Mohareb M, Moore SA, Palepu RM (2006) Conductometric and fluorometric investigations on the mixed micellar systems of cationic surfactants in aqueous media. J Colloid Interface Sci 304:491–496

    Article  CAS  Google Scholar 

  40. Tikariha D, Kumar B, Ghosh S, Tiwari AK, Saha SK, Barbero N, Quagliotto P, Ghosh Kallol K (2013) Interaction between cationic gemini and monomeric surfactants: micellar and surface properties. J Nanofluid 2:316–324

    Article  CAS  Google Scholar 

  41. Marcus Y (1985) Ion solvation. Wiley, New York

    Google Scholar 

  42. Haynes William M (1995) C.R.C. Handbook of chemistry and physics, 75th edn. CRC Press, Boca Raton

    Google Scholar 

  43. Ray A (1971) Solvophobic interactions and micelle formation in structure forming nonaqueous solvents. Nature 231:313–315

    Article  CAS  Google Scholar 

  44. Bhattacharya S, Haldar J (2004) Thermodynamics of micellization of multiheaded single-chain cationic surfactants. Langmuir 20:7940–7947

    Article  CAS  Google Scholar 

  45. Ghosh S, Banerjee AA (2002) A multitechnique approach in protein/surfactant interaction study: physicochemical aspects of sodium dodecyl sulfate in the presence of trypsin in aqueous medium. Biomacromolecules 3:9–16

    Article  CAS  Google Scholar 

  46. Debnath S, Dasgupta A, Nitra RN, Das PK (2006) Effect of counterions on the activity of lipase in cationic water-in-oil microemulsions. Langmuir 22:8732–8740

    Article  CAS  Google Scholar 

  47. De S, Aswal VK, Goyal PS, Bhattacharya S (1997) Small-angle neutron scattering studies of different mixed micelles composed of dimeric and monomeric cationic surfactants. J Phys Chem B 101:5639–5645

    Article  CAS  Google Scholar 

  48. Bajaj A, Kondaiah P, Bhattacharya S (2007) Synthesis and gene transfer activities of novel serum compatible cholesterol-based gemini lipids possessing oxyethylene-type spacers. Bioconjugate Chem 18:1537–1546

    Article  CAS  Google Scholar 

  49. Moulik SP, Ghosh S (1997) Surface chemical and micellization behaviors of binary and ternary mixtures of amphiphiles (Triton X-100, Tween-80 and CTAB) in aqueous medium. J Mol Liq 72:145–161

    Article  CAS  Google Scholar 

  50. Ghosh S, Moulik SP (1998) Interfacial and micellization behaviors of binary and ternary mixtures of amphiphiles (Tween-20, Brij-35 and sodium dodecyl sulfate) in aqueous medium. J Colloid Interface Sci 208:357–366

    Article  CAS  Google Scholar 

  51. Ghosh S (2001) Surface chemical and micellar properties of binary and ternary surfactant mixtures (cetylpyridinium chloride, Tween-40 and Brij-56) in an aqueous medium. J Colloid Interface Sci 244:128–138

    Article  CAS  Google Scholar 

  52. Panda M, Kabir-ud-Din (2011) Study of surface and solution properties of gemini-conventional surfactant mixtures and their effects on solubilization of polycyclic aromatic hydrocarbons. J Mol Liq 163:93–98

    Article  CAS  Google Scholar 

  53. Singh N, Ghosh KK (2011) Micellar characteristic and surface properties of some sulfobetaine surfactants. Tenside Surf Det 48:160–164

    Article  CAS  Google Scholar 

  54. Oda R, Huc I, Candau SJ (1998) Gemini surfactants as new, low molecular weight gelators of organic solvents and water. Angew Chem Int Ed 110:2835–2838

    Article  Google Scholar 

  55. Wang X, Wang J, Wang Y, Ye J, Yan H, Thomas RK (2005) Properties of mixed micelles of cationic gemini surfactants and nonionic surfactant Triton X-100: effects of the surfactant composition and the spacer length. J Colloid Interface Sci 286:739–746

    Article  CAS  Google Scholar 

  56. Tatsumi T, Zhang W, Kida T, Nakatsuji Y, Ono D, Takeda T, Ikeda I (2000) Novel hydrolyzable and biodegradable cationic gemini surfactants: 1,3-bis[(acyloxyalkyl)-dimethylammonio]-2-hydroxypropane dichloride. J Surfactant Deterg 2:167–172

    Article  Google Scholar 

  57. Andrzej P, Beata W, Jacek L, Dorota P, Stanislaw W, Anna K (2009) Bifunctional N-oxides of alkyldiamidoamines. J Surf Deterg 12:201–207

    Article  Google Scholar 

  58. Desnoyers JE, Perron G (1996) Temperature dependence of the free energy of micellization from calorimetric data. Langmuir 12:4044–4045

    Article  CAS  Google Scholar 

  59. Nagarajan R, Ruckenstein E (1991) Theory of surfactant self-assembly: a predictive molecular thermodynamic approach. Langmuir 7:2934–2969

    Article  CAS  Google Scholar 

  60. Nagarajan R, Wang Ch-Ch (2000) Theory of surfactant aggregation in water/ethylene glycol mixed solvents. Langmuir 16:5242–5251

    Article  Google Scholar 

  61. Goddard GD, Turro NJ, Kuo PL (1985) Fluorescence probes for critical micelle concentration determination. Langmuir 1:352–355

    Article  CAS  Google Scholar 

  62. Yoshima T, Yoshida H, Ohno A, Esumi K (2003) Physicochemical properties of quaternary ammonium bromide-type trimeric surfactants. J Colloid Interface Sci 267:167–172

    Article  Google Scholar 

  63. Ray GB, Chakraborty I, Ghosh S, Moulik SP (2007) On mixed binary surfactant systems comprising MEGA 10 and alkyltrimethylammonium bromides: a detailed physicochemical study with a critical analysis. J Colloid Interface Sci 307:543–553

    Article  CAS  Google Scholar 

  64. Hierrezuelo JM, Aguiar J, Ruiz CC (2004) Stability, interaction, size and microenvironmental properties of mixed micelles of decanoyl-N-methylglucamide and sodium dodecyl sulfate. Langmuir 20:10419–10426

    Article  CAS  Google Scholar 

  65. Sharma KS, Rodgers C, Palepu RM, Rakshit AK (2003) Studies of mixed surfactant solutions of cationic dimeric (gemini) surfactant with nonionic surfactant C12E6 in a aqueous medium. J Colloid Interface Sci 268:482–488

    Article  CAS  Google Scholar 

  66. Moulik SP, Haque MdE, Jana PK, Das AR (1996) Micellar properties of cationic surfactants in pure and mixed states. J Phys Chem 100:701–708

    Article  CAS  Google Scholar 

  67. Wettig SD, Nowak P, Verrall RE (2002) Thermodynamic and aggregation properties of gemini surfactants with hydroxyl substituted spacers in aqueous solution. Langmuir 18:5354–5359

    Article  CAS  Google Scholar 

  68. Alargova RG, Kochijashky II, Sierra ML, Zana R (1998) Micelle aggregation numbers of surfactants in aqueous solutions: a comparison between the results from steady-state and time-resolved fluorescence quenching. Langmuir 14:5412–5418

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this work by the CSIR, New Delhi [project no. 02/(0063)/12/EMR-II], is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kallol K. Ghosh.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S., Tikariha, D., Lakra, J. et al. Effect of Polar Organic Solvents on Self-Aggregation of Some Cationic Monomeric and Dimeric Surfactants. J Surfact Deterg 18, 629–640 (2015). https://doi.org/10.1007/s11743-015-1686-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-015-1686-6

Keywords

Navigation