Skip to main content
Log in

Studies on Surfactant–Ionic Liquid Interaction on Clouding Behaviour and Evaluation of Thermodynamic Parameters

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The present study investigates the effect of tetraethyl ammonium tetrafluoroborate [TEA(BF4)] ionic liquid (IL) on the cloud point (CP) of the following nonionic surfactants in aqueous solution: ter-octylphenol ethoxylates with 9.5 and 4.5 ethylene oxide groups (abbreviated TOPEO9.5 and TOPEO4.5, respectively), cetyl alcohol ethoxylate with 10 ethylene oxide groups (C16EO10), and sorbitan monolaurate and monooleate both with 20 ethylene oxide groups (SMLEO20 and SMOEO20, respectively) in aqueous solutions. The thermodynamic parameters of these mixtures were calculated at different IL concentrations. The CP of most of the tested nonionic surfactants increased with the increment of IL concentrations with the exception of C16EO10 for which it decreased. The solubility of a nonionic surfactant containing polyoxyethylene (POE) hydrophilic chain was considered as maximum at the CP, hence the thermodynamic parameters were calculated at the same temperature. The results showed that the standard Gibbs free energy (∆G 0CP ), the enthalpy (∆H 0CP ) and the entropy (∆S 0CP ) of the clouding phenomenon were found to be positive for ethoxylated octylphenol and sorbitan esters, whereas ∆H 0CP and ∆S 0CP were found to be negative for C16EO10. It was found that the overall clouding process is endothermic for ethoxylated octylphenol and sorbitan esters and exothermic for C16EO10. For all the studied systems, ∆H 0CP  > TS 0CP indicated that the process of clouding is guided by both enthalpy and entropy. The positive value of standard Gibbs free energy (∆G 0CP ) for the all mixed systems indicated that the process proceeds non-spontaneously. The ∆G 0CP decreased with increasing IL concentration for all the nonionic surfactants; however, it decreased with increasing surfactant concentration for TOPEO9.5, C16EO10, and SMOEO20, and increased with increasing surfactant concentration for TOPEO9.5 and SMLEO20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sharma KS, Patil SR, Rakshit AK (2003) Study of the cloud point of C12En nonionic surfactants: effect of additives. Colloid Surf A 219:67

    Article  CAS  Google Scholar 

  2. Gu T, Galera-Gomez PA (1999) The effect of different alcohols and other polar organic additives on the cloud point of Triton X-100 in water. Colloid Surf A 147:365

    Article  CAS  Google Scholar 

  3. Inoue T, Misono T (2008) Cloud point phenomena for POE-type nonionic surfactants in a model room temperature ionic liquid. J Colloid Interface Sci 326:483

    Article  CAS  Google Scholar 

  4. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071

    Article  CAS  Google Scholar 

  5. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun (2001) 2399–2407

  6. Dupont J, De Souza RF, Suarez PA (2002) Ionic liquid (molten salt) phase organo-metallic catalysis. Chem Rev 102:3667

    Article  CAS  Google Scholar 

  7. Wasserscheid P, Keim W (2000) Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3773

    Google Scholar 

  8. Yan Hui-cheng, Qiu-xiao Li, Geng Tao, Jiang Ya-jie (2012) Properties of the quaternary ammonium salts with novel counterions. J Surf Deterg 15:593

    Article  CAS  Google Scholar 

  9. Liu Xue-feng, Dong Li-li, Fang Yun (2011) A novel zwitterionic imidazolium-based ionic liquid surfactant: 1-carboxymethyl-3-dodecylimidazolium inner salt. J Surf Deterg 14:497

    Article  CAS  Google Scholar 

  10. Cole-Hamilton DJ (2003) Homogeneous catalysis—new approaches to catalyst separation, recovery, and recycling. Science 299:1702

    Article  CAS  Google Scholar 

  11. Bluhm ME, Bradley MG, Butterick R, Kusari U, Sneddon LG (2006) Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. J Am Chem Soc 128:7748

    Article  CAS  Google Scholar 

  12. Parvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615

    Article  CAS  Google Scholar 

  13. Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238

    Article  CAS  Google Scholar 

  14. Bates ED, Mayton RD, Ntai I, Davis JH Jr (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926

    Article  CAS  Google Scholar 

  15. Wu W, Han B, Gao H, Liu Z, Jiang T, Huang J (2004) Desulfurization of flue gas: SO2 absorption by an ionic liquid. Angew Chem 116:2469

    Article  Google Scholar 

  16. Wang P, Wenger B, Humphry-Baker R, Moser JE, Teuscher J, Kantlehner W, Mezger J, Stoyanov EV, Zakeeruddin SM, Grätzel M (2005) Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. J Am Chem Soc 127:6850

    Article  CAS  Google Scholar 

  17. Jing-Liang Li, Bai Dong-Shun, Chen Bing-Hung (2009) Effects of additives on the cloud points of selected nonionic linear ethoxylated alcohol surfactants. Colloids Surf A 346:237

    Article  CAS  Google Scholar 

  18. Mahajan R, Chawla J, Bakshi M (2004) Depression in the cloud point of Tween in the presence of glycol additives and triblock polymers. Colloid Polym Sci 282:1165

    Article  CAS  Google Scholar 

  19. Inoue T, Misono T (2009) Micelle formation of polyoxyethylene-type nonionic surfactants in bmimBF4 studied by 1H NMR and dynamic light-scattering. J Colloid Interface Sci 337:240

    Article  CAS  Google Scholar 

  20. Rai R, Baker GA, Behera K, Mohanty P, Kurur ND, Pandey S (2010) Ionic liquid-induced unprecedented size enhancement of aggregates within aqueous sodium dodecylbenzene sulfonate. Langmuir 26:17821

    Article  CAS  Google Scholar 

  21. Anderson JL, Pino V, Hagberg EC, Sheares VV, Armstrong DW (2003) Surfactant solvation effects and micelle formation in ionic liquids. Chem Commun 19:2444

    Article  Google Scholar 

  22. Fletcher KA, Pandey S (2004) Surfactant aggregation within room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Langmuir 20:33

    Article  CAS  Google Scholar 

  23. Tran CD, Yu S (2005) Near-infrared spectroscopic method for the sensitive and direct determination of aggregations of surfactants in various media. J Colloid Interface Sci 283:613

    Article  CAS  Google Scholar 

  24. Patrascu C, Gauffre F, Nallet F, Bordes R, Oberdisse J, De Lauth-Viguerie N, Mingotaud C (2006) Micelles in ionic liquids: aggregation behavior of alkyl poly(ethyleneglycol)-ethers in 1-butyl-3-methyl-imidazolium type ionic liquids. Chem Phys Chem 7:99

    Article  CAS  Google Scholar 

  25. Sato T, Masuda G, Takagi K (2004) Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim Acta 49:3603

    Article  CAS  Google Scholar 

  26. Wang Z, Xu JH, Zhang W, Zhuang B, Qi H (2008) Cloud point of nonionic surfactant Triton X-45 in aqueous solution. Colloids Surf B 61:118

    Article  CAS  Google Scholar 

  27. Fletcher KA, Pandey S (2003) Solvatochromic probe behavior within ternary room-temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate + ethanol + water solutions. J Phys Chem B 107:13532

    Article  CAS  Google Scholar 

  28. Reichardt C (2005) Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem 7:339

    Article  CAS  Google Scholar 

  29. Anderson JL, Ding J, Welton T, Armstrong DW (2002) Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc 124:14247

    Article  CAS  Google Scholar 

  30. Youngs TGA, Holbrey JD, Deetlefs M, Nieuwenhuyzen M, Gomes MFC, Hardacre C (2006) A Molecular dynamics study of glucose solvation in the ionic liquid 1, 3-dimethylimidazolium chloride. Chem Phys Chem 7:2279

    Article  CAS  Google Scholar 

  31. Rauwel G, Leclercq L, Criquelion J, Aubry JM, Rataj VN (2012) Aqueous mixtures of di-n-decyldimethylammonium chloride/polyoxyethylene alkyl ether: dramatic influence of tail/tail and head/head interactions on co-micellization and biocidal activity. J Colloid Interface Sci 374:176

    Article  CAS  Google Scholar 

  32. D’Souza F, Maligaspe E, Sandanayaka ASD, Subbaiyan NK, Karr PA, Hasobe T, Ito O (2010) Photochemical charge separation in supramolecular phthalocyanine—multifullerene conjugates assembled by crown ether-alkyl ammonium cation interactions. J Phys Chem A 114:10951

    Article  Google Scholar 

  33. Noujeim N, Leclercq L, Schmitzeret AR (2008) N, N′ disubstituted methyldiimidazolium salts: a versatile guest for various macrocycles. J Org Chem 73:3784

    Article  CAS  Google Scholar 

  34. Weber E (2004) Classification and nomenclature of supramolecular compounds. In: Atwood JL, Steed JW (eds) Encyclopedia of supramolecular chemistry. Marcel Dekker, New York, p 1106

  35. Alama MS, Mandal A, Mandal AB (2011) Effect of KCl on the micellization and clouding phenomenon of the amphiphilic phenothiazine drug promethazine hydrochloride: some thermodynamic properties. J Chem Eng Data 56:1540

    Article  Google Scholar 

  36. Alama MS, Kabir-ud-Din, Mandal AB (2010) Evaluation of thermodynamic parameters of amphiphilic tricyclic antidepressant drug imipramine hydrochloride-additive systems at the cloud point. Colloid Surf B 76:577

    Article  Google Scholar 

  37. Alama MS, Kabir-ud-Din, Mandal AB (2010) Thermodynamics of the amphiphilic drug, amitriptyline hydrochloride-surfactant/polymer systems at the cloud point. J Dispers Sci Technol 31:1721

    Article  Google Scholar 

  38. Batigoc C, Akbas H, Boz M (2011) Thermodynamics of non-ionic surfactant Triton X-100—cationic surfactants mixtures at the cloud point. J Chem Thermodyn 43:1800

    Article  Google Scholar 

  39. Kabir-ud-Din, Khatoon S, Naqvi AZ (2008) Nonelectrolyte-induced CP variation of TX-114+ TBAB System. Acta Phys Chim Sin 24:1180

    Article  CAS  Google Scholar 

  40. Patil TJ, Patil HA (2005) Micellization studies on binary mixture of methionine with polyoxyethylene (10) cetyl ether (C16EO10) and polyoxyethylene (20) cetyl ether (Brij-58). Int J Chem Sci 3:507

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jigisha Parikh.

About this article

Cite this article

Bhatt, D., Maheria, K.C. & Parikh, J. Studies on Surfactant–Ionic Liquid Interaction on Clouding Behaviour and Evaluation of Thermodynamic Parameters. J Surfact Deterg 16, 547–557 (2013). https://doi.org/10.1007/s11743-012-1414-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-012-1414-4

Keywords

Navigation