Skip to main content
Log in

Partitioning and Localization of Fragrances in Surfactant Mixed Micelles

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The localization and dynamics of fragrance compounds in surfactant micelles are studied systematically in dependence on the hydrophobicity and chemical structure of the molecules. A broad range of fragrance molecules varying in octanol/water partition coefficients P ow is employed as probe molecules in an aqueous micellar solution, containing anionic and nonionic surfactants. Diffusion coefficients of surfactants and fragrances obtained by Pulsed Field Gradient (PFG)-NMR yield the micelle/water distribution equilibrium. Three distinct regions along the log(P ow) axis are identified: hydrophilic fragrances (log(P ow) < 2) distribute almost equally between micellar and aqueous phases whereas hydrophobic fragrances (log(P ow) > 3.5) are fully solubilized in the micelles. A steep increase of the incorporated fraction occurs in the intermediate log(P ow) region. Here, distinct micelle swelling is found, while the incorporation of very hydrophobic fragrances does not lead to swelling. The chemical structure of the probe molecules, in addition to hydrophobicity, influences fragrance partitioning and micelle swelling. Structural criteria causing a decrease of the aggregate curvature (flattening) are identified. 2H-NMR spin relaxation experiments of selectively deuterated fragrances are performed monitoring local mobility of fragrance and leading to conclusions about their incorporation into either micellar interface or micelle core. The tendencies of different fragrance molecules (i) to cause interfacial incorporation, (ii) to lead to a flattening of the micellar curvature and (iii) to incorporate into micelles are shown to be correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Friberg SE (1998) Fragrance compounds and amphiphilic association structures. Adv Colloid Interface Sci 75:181–214

    Article  CAS  Google Scholar 

  2. Aikens P, Friberg SE (1996) Organized assemblies in cosmetics and transdermal drug delivery. Curr Opin Colloid Interface Sci 1:672–676

    Article  CAS  Google Scholar 

  3. Labows JN, Brahms JC, Cagan RH (1997) Solubilization of fragrances by surfactants. In: Rieger MM, Rhein LD (eds) Surfactants in cosmetics. Surfactant science series, vol 68. Marcel Dekker, New York, pp 605–619

  4. Caboi F, Amico GS, Pitzalis P, Monduzzi M, Nylander T, Larsson K (2001) Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system. I. Phase behavior. Chem Phys Lipids 109:47–62

    Article  CAS  Google Scholar 

  5. Kanei N, Tamura Y, Kunieda H (1999) Effect of types of perfume compounds on the hydrophile-lipophile balance temperature. J Colloid Interface Sci 218:13–22

    Article  CAS  Google Scholar 

  6. Murgia S, Caboi F, Monduzzi M (2001) Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system II—C-13 NMR relaxation study. Chem Phys Lipids 110:11–17

    Article  CAS  Google Scholar 

  7. Blokhus AM, Hoiland H, Backlund S (1986) Solubilization of heptanols and α,ω-alkanediols in aqueous-solutions of sodium dodecyl-sulfate. J Colloid Interface Sci 114:9–15

    Article  CAS  Google Scholar 

  8. Yiv S, Zana R, Ulbricht W, Hoffmann H (1981) Effect of alcohol on the properties of micellar systems. 2. Chemical relaxation studies of the dynamics of mixed alcohol + surfactant micelles. J Colloid Interface Sci 80:224–236

    Article  CAS  Google Scholar 

  9. Candau S, Zana R (1981) Effect of alcohols on the properties of micellar systems. 3. Elastic and quasi-elastic light-scattering study. J Colloid Interface Sci 84:206–219

    Article  CAS  Google Scholar 

  10. Zhao GX, Li XG (1991) Solubilization of n-octane and n-octanol by a mixed aqueous-solution of cationic anionic surfactants. J Colloid Interface Sci 144:185–190

    Article  CAS  Google Scholar 

  11. Caponetti E, Martino DC, Floriano MA, Triolo R (1996) Application of the small-angle neutron scattering technique to the study of solubilization mechanisms of organic molecules by micellar systems. J Mol Struct 383:133–143

    Article  CAS  Google Scholar 

  12. Landry JM, Marangoni DG (2008) The effect of added alcohols on the micellization process of sodium 8-phenyloctanoate. Colloid Polym Sci 286:655–662

    Article  CAS  Google Scholar 

  13. Zhang WC, Li GZ, Shen Q, Mu JH (2000) Effect of benzyl alcohol on the rheological properties of CTAB/KBr micellar systems. Colloids Surf A Physicochem Eng Asp 170:59–64

    Article  CAS  Google Scholar 

  14. Hedin N, Sitnikov R, Furo I, Henriksson U, Regev O (1999) Shape changes of C(16)TABr micelles on benzene solubilization. J Phys Chem B 103:9631–9639

    Article  CAS  Google Scholar 

  15. Groth C, Nyden M, Persson KC (2007) Interactions between benzyl benzoate and single- and double-chain quaternary ammonium surfactants. Langmuir 23:3000–3008

    Article  CAS  Google Scholar 

  16. Tokuoka Y, Uchiyama H, Abe M (1994) Solubilization of some synthetic perfumes by anionic-nonionic mixed surfactant systems. J Phys Chem 98:6167–6171

    Article  CAS  Google Scholar 

  17. Tokuoka Y, Uchiyama H, Abe M, Christian SD (1995) Solubilization of some synthetic perfumes by anionic-nonionic mixed surfactant systems. Langmuir 11:725–729

    Article  CAS  Google Scholar 

  18. Vona SA, Friberg SE, Brin AJ (1998) Location of fragrance molecules within lamellar liquid crystals. Colloids Surf A Physicochem Eng Asp 137:79–89

    Article  CAS  Google Scholar 

  19. Kayali I, Qamhieh K, Lindman B (2006) Effect of type of fragrance compounds on their location in hexagonal liquid crystal. J Dispers Sci Technol 27:1151–1155

    Article  CAS  Google Scholar 

  20. Uddin MH, Kanei N, Kunieda H (2000) Solubilization and emulsification of perfume in discontinuous cubic phase. Langmuir 16:6891–6897

    Article  CAS  Google Scholar 

  21. Abe M, Mizuguchi K, Kondo Y, Ogino K, Uchiyama H, Scamehorn JF, Tucker EE, Christian SD (1993) Solubilization of perfume compounds by pure and mixtures of surfactants. J Colloid Interface Sci 160:16–23

    Article  CAS  Google Scholar 

  22. Suratkar V, Mahapatra S (2000) Solubilization site of organic perfume molecules in sodium dodecyl sulfate micelles: new insights from proton NMR studies. J Colloid Interface Sci 225:32–38

    Article  CAS  Google Scholar 

  23. Stejskal EO, Tanner JE (1965) Spin diffusion measurements—spin echoes in presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  24. Stilbs P (1987) Fourier transform pulsed-gradient spin-echo studies of molecular diffusion. Prog Nucl Magn Reson Spectrosc 19:1–45

    Article  CAS  Google Scholar 

  25. Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Clarendon Press, Oxford

    Google Scholar 

  26. Söderman O, Stilbs P, Price WS (2004) NMR studies of surfactants. Concepts Magn Reson Part A 23A:121–135

    Article  CAS  Google Scholar 

  27. Lindman B, Olsson U (1996) Structure of microemulsions studied by NMR. Ber Bunsenges Phys Chem 100:344–363

    CAS  Google Scholar 

  28. Lindblom G, Orädd G (1994) NMR studies of translational diffusion in lyotropic liquid crystals and lipid membranes. Progr Nucl Magn Reson Spectrosc 26:483–515

    Article  CAS  Google Scholar 

  29. Thuresson K, Söderman O, Hansson P, Wang G (1996) Binding of SDS to ethyl(hydroxyethyl)cellulose. Effect of hydrophobic modification of the polymer. J Phys Chem 100:4909–4918

    Article  CAS  Google Scholar 

  30. Adalsteinsson T, Dong WF, Schönhoff M (2004) Diffusion of 77000 g/mol dextran in submicron polyelectrolyte capsule dispersions measured using PFG-NMR. J Phys Chem B 108:20056–20063

    Article  CAS  Google Scholar 

  31. Rumplecker A, Förster A, Zahres M, Mayer C (2004) Molecular exchange through vesicle membranes: a pulsed field gradient nuclear magnetic resonance study. J Chem Phys 120:8740–8747

    Article  CAS  Google Scholar 

  32. Bauer A, Hauschild S, Stolzenburg M, Forster S, Mayer C (2006) Molecular exchange through membranes of poly(2-vinylpyridine-block-ethylene oxide) vesicles. Chem Phys Lett 419:430–433

    Article  CAS  Google Scholar 

  33. Choudhury RP, Schönhoff M (2007) Pulsed-field-gradient NMR study of phenol binding and exchange in dispersions of hollow polyelectrolyte capsules. J Chem Phys 127:234702

    Article  CAS  Google Scholar 

  34. Fieber W, Herrmann A, Ouali L, Velazco MI, Kreutzer G, Klok H-A, Ternat C, Plummer CJG, Månson J-AE, Sommer H (2007) NMR diffusion and relaxation studies of the encapsulation of fragrances by amphiphilic multiarm star block copolymers. Macromolecules 40:5372–5378

    Article  CAS  Google Scholar 

  35. Stilbs P (1981) Solubilization equilibria determined through Fourier-transform NMR self-diffusion measurements. J Colloid Interface Sci 80:608–610

    Article  CAS  Google Scholar 

  36. Stilbs P (1982) Fourier-transform NMR pulsed-gradient spin-echo (FT-PGSE) self-diffusion measurements of solubilization equilibria in SDS solutions. J Colloid Interface Sci 87:385–394

    Article  CAS  Google Scholar 

  37. Stilbs P (1983) A comparative-study of micellar solubilization for combinations of surfactants and solubilizates using the fourier-transform pulsed-gradient spin-echo NMR multicomponent self-diffusion technique. J Colloid Interface Sci 94:463–469

    Article  CAS  Google Scholar 

  38. Raney O (1999) Domestic cleaning applications. In: Lange KR (ed) Surfactants. Carl Hanser Verlag, München, pp 171–203

    Google Scholar 

  39. Wisniewski K (2006) Speciality liquid household surface cleaners. In: Lai KY (ed) Liquid detergents. Surfactant science series, vol 129. CRC Press, Boca Raton, pp 555–636

  40. Murphy RE, Schure MR, Foley JP (1998) Effect of sampling rate on resolution in comprehensive two-dimensional liquid chromatography. Anal Chem 70:1585–1594

    Article  CAS  Google Scholar 

  41. Swe MM, Yu LYE, Hung KC, Chen BH (2006) Solubilization of selected polycyclic aromatic compounds by nonionic surfactants. J Surfactants Deterg 9:237–244

    Article  CAS  Google Scholar 

  42. Cavalli L, Landone A, Divo C, Gini G, Galli M, Bareggi E (1976) Identification and structure elucidation of components of commercial linear alkylbenzenes. J Am Oil Chem Soc 53:704–710

    Article  CAS  Google Scholar 

  43. Das S, Bhirud RG, Nayyar N, Narayan KS, Kumar VV (1992) Chemical-shift changes on micellization of linear alkyl benzenesulfonate and oleate. J Phys Chem 96:7454–7457

    Article  CAS  Google Scholar 

  44. Evans DF, Wennerström H (1994) The colloidal domain: where physics, chemistry, biology and technology meet. VCH Publishers Inc, New York

    Google Scholar 

  45. Nilsson PG, Wennerström H, Lindman B (1983) Structure of micellar solutions of non-ionic surfactants—nuclear magnetic resonance self-diffusion and proton relaxation studies of poly(ethylene oxide) alkyl ethers. J Phys Chem 87:1377–1385

    Article  CAS  Google Scholar 

  46. Jönströmer M, Jönsson B, Lindman B (1991) Self-diffusion in nonionic surfactant water-systems. J Phys Chem 95:3293–3300

    Article  Google Scholar 

  47. Wennerström H, Lindman B, Söderman O, Drakenberg T, Rosenholm JB (1979) C-13 magnetic-relaxation in micellar solutions—influence of aggregate motion on T1. J Am Chem Soc 101:6860–6864

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Christine Vuilleumier for providing the log(P ow) values of the fragrance compounds and Alan Parker as well as Kenneth Wong of Firmenich Corporate Research for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Schönhoff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 (DOC 91 kb)

About this article

Cite this article

Fischer, E., Fieber, W., Navarro, C. et al. Partitioning and Localization of Fragrances in Surfactant Mixed Micelles. J Surfact Deterg 12, 73–84 (2009). https://doi.org/10.1007/s11743-008-1104-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-008-1104-4

Keywords

Navigation