Skip to main content
Log in

Multiple linear regression modeling of the critical micelle concentration of alkyltrimethylammonium and alkylpyridinium salts

  • Published:
Journal of Surfactants and Detergents

Abstract

The critical micelle concentration (CMC) of a set of 30 alkyltrimethylammonium [RN+(R′)3X] and alkylpyridinium salts [RN+ΦX] was related to topological, electronic, and molecular structure parameters using a stepwise regression method. Among different models obtained, two equations were selected as the best and their specifications are given. The statistics for these models together with the crossvalidation results indicate the capability of both models to predict the CMC of cationic surfactants. The results obtained for alkyltrimethylammonium salts indicate that geometric characteristics such as volume of the tail of the molecule, maximum distance between the atoms, and surface area play a major role in micelle formation. However, the simultaneous modeling of the CMC of both alkyltrimethylammonium and alkylpyridinium salts indicates that the topological descriptors of the Balaban and Randic indices and also the electronic parameter of total energy of the molecules are important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAL:

Balaban index

CMC:

critical micelle concentration

E:

total energy

HEAT−1 :

reciprocal of heat of formation

MAXDIS:

maximum distance between the atoms of the molecule

MEKC:

micellar electrokinetic chromatography

MLC:

micellar liquid chromatography

MLR:

multiple linear regression

R :

multiple correlation coefficient

RA:

Randic index

S:

surface area

SE:

standard error

VT:

volume of the tail of the molecule

References

  1. Myers, D., Surfactant Science and Technology, 2nd edn., VCH Publishers, 1992, p. 61.

  2. Porter, M.R., Handbook of Surfactants, 2nd edn., Chapman & Hall, New York, 1994, p. 116.

    Google Scholar 

  3. Brooks, S.H., A. Berthod, B.A. Krisch, and J.G. Dorsey, Flow Injection System for Determination of Critical Micelle Concentrations of Ionic and Nonionic Surfactants, Anal. Chim. Acta 209:111 (1988).

    Article  CAS  Google Scholar 

  4. Rosen, M.J., Surfactants and Interfacial Phenomena, John Wiley & Sons, New York, 1989, p. 106.

    Google Scholar 

  5. Yaroshenko, N.A., and Zh.M. Aryamova, Accounting for Surface Tension in the Determination of Critical Micelle Concentration for Aqueous Solutions of Ionic Surfactants, Ukr. Khim. Zh. 51:466 (1985).

    CAS  Google Scholar 

  6. Jalali-Heravi, M., and E. Konouz, Prediction of Critical Micelle Concentration of Some Anionic Surfactants Using Multiple Regression Techniques: A Quantitative Structure-Activity Relationship Study, J. Surfact. Deterg. 3:1 (2000).

    Google Scholar 

  7. Nakamura, H., A. Sano, and K. Matsuura, Determination of Critical Micelle Concentration of Anionic Surfactants by Capillary Electrophoresis Using 2-Naphthalenemethanol as a Marker for Micelle Formation, Anal. Sci. 14:379 (1998).

    Article  CAS  Google Scholar 

  8. Kawakatsu, T., K. Kawasaki, and F. Hirofumi, Theories and Computer Simulations of Self-Assembly Surfactant Solutions, J. Phys. Condens. Matter 6:6385 (1994).

    Article  CAS  Google Scholar 

  9. Karaborni, S., K. Esselink, P.A.J. Hilbers, and B. Smit, Simulating Surfactant Self-Assembly, J. Phys. Condens. Matter 6 (Suppl. 23A):A351 (1994).

    Article  CAS  Google Scholar 

  10. Zoller, N.J., A. Shiloach, and D. Blankschten, Predicting Surfactant Solution Behaviour, CHEMTECH 26:24 (1996).

    Google Scholar 

  11. Jalali-Heravi, M., and E. Konouz, Use of Quantitative Structure-Activity Relationships in Prediction of CMC of Nonionic Surfactants, Quant. Struct. Act. Relat. 19:135 (2000).

    Article  CAS  Google Scholar 

  12. SPSS/PC, The Statistical Package for IBM PC, Quiad Software, Ontario, Canada, 1986.

    Google Scholar 

  13. MOPAC, Version 6, U.S. Air Force Academy, Colorado Springs, 1990.

  14. Hyperchem, Release 3 for Windows, Molecular Modeling System, Hypercube, Inc. and Autodesk, Ringoes, NJ, 1993.

    Google Scholar 

  15. Van Os, N.M., J.R. Haak, and L.A.M. Rupert, Physico-chemical Properties of Selected Anionic, Cationic and Nonionic Surfactants, Elsevier Science, New York, 1993, p. 9.

    Google Scholar 

  16. Wiener, H., Structural Determination of Paraffin Boiling Points, J. Am. Chem. Soc. 69:17 (1947).

    Article  CAS  Google Scholar 

  17. Randic, M., Rearrangement of the Connectivity Matrix of a Gaph Reply to Comments, J. Chem. Phys. 62:309 (1973).

    Article  Google Scholar 

  18. Balaban, A.T., Highly Discriminating Distance-Based Topological Index, Chem. Phys. Lett. 89:399 (1982).

    Article  CAS  Google Scholar 

  19. Stouch, T.R., and P.C. Jurs, A Simple Method for the Representation, Qualification and Comparision of the Volumes and Shapes of Chemical Compounds, J. Chem. Inf. Comput. Sci. 26:4 (1986).

    Article  CAS  Google Scholar 

  20. Dewar, M.J.S., E.G. Zoebish, J.J.P. Stewart, and E.F. Healy, AM1: A New General Purpose Quantum Mechanical Molecular Model, J. Chem. Soc. 107:3902 (1985).

    Article  CAS  Google Scholar 

  21. George, D., and P. Mallery, SPSS/PC+Step by Step, A Simple Guide and Reference, Wadsworth, Belmont, CA, 1995, p. 168.

    Google Scholar 

  22. Cramer, R.D., D.E. Patterson, and J.D. Bunce, Effect of Shape on Binding of Steroids to Carrier Proteins, J. Am. Chem. Soc. 110:5959 (1988).

    Article  CAS  Google Scholar 

  23. Mihalic, Z., and N. Trinajstic, A Graph-Theoretical Approach to Structure-Property Relationships, J. Chem. Educ. 69:701 (1992).

    Article  CAS  Google Scholar 

  24. Stache, H.W., Anionic Surfactants, Organic Chemistry, Vol. 56, Marcel Dekker, New York, 1996, p. 243.

    Google Scholar 

  25. Klvenes, H.B., Structure and Aggregation in Dilute Solutions of Surface Active Agents, J. Am. Oil Chem. Soc. 30:78 (1953).

    Google Scholar 

  26. Wright, K., and H.V. Tartar, Solubilities, Micelle Formation and Hydrates of the Sodium Salts of the Higher Alkylsulfonates, J. Am. Chem. Soc. 61:539 (1939).

    Article  Google Scholar 

  27. Kier, L.B., and L.H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jalali-Heravi.

About this article

Cite this article

Jalali-Heravi, M., Konouz, E. Multiple linear regression modeling of the critical micelle concentration of alkyltrimethylammonium and alkylpyridinium salts. J Surfact Deterg 6, 25–30 (2003). https://doi.org/10.1007/s11743-003-0244-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-003-0244-7

Key Words

Navigation