Skip to main content

Advertisement

Log in

Quantitative structure-critical micelle concentration modeling of anionic gemini surfactants, comparison of MLR, PLS, WNN, and ANFIS models with eigenvalue and correlation ranking methods

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Unique properties of gemini surfactants have attracted the attention of the cosmetics, paints, textile, and detergents industries. Therefore, design of new gemini surfactants is considered important. In this work, the critical micelle concentration of 85 anionic gemini surfactants was predicted by structural descriptors for the first time. Genetic algorithm-multiple linear regression (GA-MLR), genetic algorithm-partial least squares (GA-PLS), principal component-adaptive neuro-fuzzy inference systems (PC-ANFIS), and principal component-wavelet neural network (PC-WNN) were used as linear and nonlinear models. Between linear models, the PLS method had better root mean square errors (RMSE) and mean relative error (MRE) values than MLR model. The eigenvalue and correlation ranking methods were used to select the best PCs in nonlinear models such as PC-ANFIS and PC-WNN. The correlation ranking selection method has better results in both the ANFIS and WNN models. WNN has better results with respect to other models. The RMSE of the training, test, and validation sets for the best PC-WNN model with eight inputs were 0.250, 0.359, and 0.310, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. F.M. Menger, J.S. Keiper, Angew. Chem. Int. Ed. 39, 1906 (2000)

    Article  CAS  Google Scholar 

  2. P. Tyagi, R. Tyagi, Tenside Surfact. Det. 46, 373 (2009)

    Article  CAS  Google Scholar 

  3. M.S. Kamal, J. Surfact. Det. 19, 223 (2016)

    Article  CAS  Google Scholar 

  4. L. Jiao, Y. Wang, L. Qu, Z. Xue, Y. Ge, H. Liu, B. Lei, Q. Gao, M. Li, Colloid. Surf. A 586, 124226 (2020)

    Article  CAS  Google Scholar 

  5. Z. Kardanpour, B. Hemmateenejad, T. Khayamian, Anal. Chim. Acta 531, 285 (2005)

    Article  CAS  Google Scholar 

  6. G. Absalan, B. Hemmateenejad, M. Soleimani, M. Akhond, R. Miri, Q.S.A.R. Comb, Sci. 23, 416 (2004)

    CAS  Google Scholar 

  7. J.M. Sutter, J.H. Kalivas, P.M. Lang, J. chemometr. 6, 217 (1992)

    Article  CAS  Google Scholar 

  8. B. Hemmateenejad, Chemometr. Intell. Lab. 75, 231 (2005)

    Article  CAS  Google Scholar 

  9. J.R. Jang and C.T. Sun, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice Hall.1997.

  10. A. Khajeh, H. Modarress, Struct. Chem. 22, 1315 (2011)

    Article  CAS  Google Scholar 

  11. E. Buyukbingol, A. Sisman, M. Akyildiz, F. Nur Alparslanb and A. Adejare, Bioorgan. Med. Chem., 15, 4265 (2007).

  12. M. Jalali-Heravi, M. Asadollahi-Baboli, A. Mani-Varnosfaderani, J. Pharmaceut. Biomed. 50, 853 (2009)

    Article  CAS  Google Scholar 

  13. M. Shahlaei, A. Pourhossein, Med. Chem. Res. 22, 4423 (2013)

    Article  CAS  Google Scholar 

  14. T. Khayamian, A.A. Ensafi, R. Tabaraki, M. Esteki, Anal. Lett. 38, 1477 (2005)

    Article  CAS  Google Scholar 

  15. R. Tabaraki, T. Khayamian, A.A. Ensafi, J. Mol. Graph. Model. 25, 46 (2006)

    Article  CAS  Google Scholar 

  16. R. Tabaraki, T. Khayamian, A.A. Ensafi, Dyes Pigments 73, 230 (2007)

    Article  CAS  Google Scholar 

  17. X. Du, Y. Lu, L. Li, J. Wang, Z. Yang, Colloid. Surface. A 290, 132 (2006)

    Article  CAS  Google Scholar 

  18. S. Zhu, F. Cheng, J. Wang, J.G. Yo, Colloid. Surface. A 281, 35 (2006)

    Article  CAS  Google Scholar 

  19. M.B. Moshe, S. Magdassi, Colloid. Surface. A 250, 403 (2004)

    Article  Google Scholar 

  20. T. Yoshimura, K. Esumi, J. Colloid Interf. Sci. 276, 231 (2004)

    Article  CAS  Google Scholar 

  21. K. Tsubone, Y. Arakawa, M.J. Rosen, J. Colloid Interf. Sci. 262, 516 (2003)

    Article  CAS  Google Scholar 

  22. R.L. Dix, J. Colloid Interf. Sci. 238, 447 (2001)

    Article  CAS  Google Scholar 

  23. P. Renouf, D. Hebrault, R.J. Desmurs, M.J. Mercier, C. Mioskowski, L. Lebeau, Chem. Phys. Lipids 99, 21 (1999)

    Article  CAS  Google Scholar 

  24. R. Zana, Handbook of Gemini Surfactant (John Willy, New York, 2004).

    Google Scholar 

  25. R. Todeschini, Milano Chemometrics and QSPR Group. http://www.disatuni- mib.it/vhml/.

  26. U. Depczynski, V.J. Frost, K. Molt, Anal. Chim. Acta 420, 217 (2000)

    Article  CAS  Google Scholar 

  27. H.X. Liu, R.S. Zhang, X.J. Yao, M.C. Liu, Z.D. Hu, B.T. Fan, J. Chem. Inf. Comput. Sci. 44, 161 (2004)

    Article  CAS  Google Scholar 

  28. A. Golbraikh and A. Tropsha, A., J. Mol. Graphics Model, 20, 269 (2002).

  29. R. Todeschini, V. Consonni, Handbook of Molecular Descriptors (Wiley, New York, 2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Tabaraki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabaraki, R., Khodabakhshi, M. & Fatahi, G. Quantitative structure-critical micelle concentration modeling of anionic gemini surfactants, comparison of MLR, PLS, WNN, and ANFIS models with eigenvalue and correlation ranking methods. J IRAN CHEM SOC 18, 2703–2711 (2021). https://doi.org/10.1007/s13738-021-02225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02225-9

Keywords

Navigation