Skip to main content
Log in

Phase-specific residual stresses induced by deep drawing of lean duplex steel: measurement vs. simulation

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The final geometry and fatigue behavior of deep drawn components in service is strongly influenced by deformation-induced residual stresses. For multi-phase materials, besides macro residual stresses (first kind), phase-specific residual stresses (second kind) occur on the microscale of the material. In order to influence the component characteristics positively it is important to predict the distribution of the residual stresses on both scales. A two-scale simulation and measurement approach is presented which allows for an efficient determination and validation of the phase-specific residual stresses. Finite-element simulations are performed to predict the deformation-induced macro residual stresses. A numerically efficient mean-field homogenization is used to estimate the total strain, the plastic strain and the eigenstrain on the grain level based on macroscopic stress, strain and stiffness data. The simulated residual stresses are compared to experimental data. Macro residual stresses are determined by means of incremental hole drilling method, whereas phase-specific residual stresses are analyzed with use of X-ray diffraction according to the \(\sin ^2\psi\) method. The simulation and measurement approaches are applied to a representative deep-drawing process for the lean duplex stainless steel \(\mathrm {X2CrNiN23{-4}}\), which consists of a ferritic and an austenitic phase both with the same volume fraction. The results indicate that the proposed two-scale simulation approach is well suited for the prediction of phase-specific residual stresses after a deep drawing process of lean duplex steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wohlfahrt H (1981) In: 1st Conference on Shot Peening, Sept

  2. Behnken H, Hauk V (1993) On the influence of microresidual stresses during cyclic loading (Oberursel 1993), pp 733–742

  3. Bensoussan A, Lions JL, Papanicolaou G (2011) Asymptotic analysis for periodic structures, vol 374. American Mathematical Soc

  4. Dvorak GJ, Zhang J (2001) Transformation field analysis of damage evolution in composite materials. J Mech Phys Solids 49(11):2517

    Article  MATH  Google Scholar 

  5. Castañeda PP, Suquet P (1997) Nonlinear Composites. Advances in Applied Mechanics 34(C):171

    Article  MATH  Google Scholar 

  6. Miehe C, Schotte J, Schröder J (1999) Computational micro–macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput Mater Sci 16(1–4):372

    Article  Google Scholar 

  7. Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69

    Article  MathSciNet  MATH  Google Scholar 

  8. Kanouté P, Boso DP, Chaboche Jl, Schrefler BA (2009) Multiscale methods for composites: a review. Arch Comput Methods Eng 16(1):31

    Article  MATH  Google Scholar 

  9. Feyel F, Chaboche Jl (2000) FE 2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC / Ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309

    Article  MATH  Google Scholar 

  10. Schröder J, Balzani D, Brands D (2011) Approximation of random microstructures by periodic statistically similar representative volume elements based on lineal-path functions. Arch Appl Mech 81(7):975

    Article  MATH  Google Scholar 

  11. Fritzen F, Hodapp M (2016) The finite element square reduced (FE2R) method with GPU acceleration: towards three-dimensional two-scale simulations. International Journal for Numerical Methods in Engineering

  12. Rieger F, Böhlke T (2015) Microstructure based prediction and homogenization of the strain hardening behavior of dual-phase steel. Arch Appl Mech 85(9):1439

    Article  Google Scholar 

  13. Neumann R, Böhlke T (2016) Hashin-Shtrikman type mean field model for the two-scale simulation of the thermomechanical processing of steel. Int J Plast 77:1

    Article  Google Scholar 

  14. Schajer GS (1988) Measurement of non-uniform residual stresses using the hole-drilling method. Part I—stress calculation procedures. J Eng Mater Technol 110(4):338

    Article  Google Scholar 

  15. Sobolevski EG, Nau A, Scholtes B (2011) Residual stress analysis using the hole-drilling method and geometry specific calibration functions. In: Residual Stresses VIII, Materials Science Forum, vol. 681 (Trans Tech Publications, 2011), Materials Science Forum, vol. 681, pp 159–164

  16. Simon N, Mrotzek T, Gibmeier J (2018) reliable residual stress analysis for thin metal sheets by incremental hole drilling [in press]. Materials Performance and Characterization 7(4)

  17. Macherauch E, Muller P (1961) Das sin2\(\psi\)-Verfahren der röntgenographischen Spannungsmessung. Zeitschrift für angewandte Physik 13(7):305

    Google Scholar 

  18. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond A: Math, Phys Eng Sci 193(1033):281

    Article  MathSciNet  MATH  Google Scholar 

  19. Willis J (1981) Variational and related methods for the overall properties of composites. Elsevier, Oxford, pp 1–78

    MATH  Google Scholar 

  20. Torquato S (2002) Statistical description of microstructures. Ann Rev Mater Res 32(1):77

    Article  Google Scholar 

  21. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11(5):357

    Article  MathSciNet  MATH  Google Scholar 

  22. Ramberg W, Osgood WR (1943) Description of stress-strain curves by three parameters. National Advisory Committee For Aeronautics (Technical Note No. 902)

  23. Mente T (2015) Numerische Simulation der wasserstoffunterstützten Rissbildung in austenitisch-ferritischen Duplexstählen. Doctoral thesis, Bundesanstalt für Materialforschung und -prüfung (BAM)

  24. ASTM International. ASTM E837-08e2 standard test method for determining residual stresses by the hole-drilling strain-gage method (2009)

  25. Wolfstieg U (1976) Die Symmetrisierung unsymmetrischer Interferenzlinien mit Hilfe von Spezialblenden. Härterei-Technische Mitteilungen 31:23

    Google Scholar 

  26. Kröner E (1958) Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Zeitschrift für Physik 151(4):504

    Article  Google Scholar 

  27. Warren BE, Averbach BL (1950) The effect of cold-work distortion on X-ray patterns. J Appl Phys 21(6):595

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Simon.

Additional information

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - GI 376/13-1; BO 1466/14-1; LI 1556/61-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, N., Erdle, H., Walzer, S. et al. Phase-specific residual stresses induced by deep drawing of lean duplex steel: measurement vs. simulation. Prod. Eng. Res. Devel. 13, 227–237 (2019). https://doi.org/10.1007/s11740-019-00877-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-019-00877-4

Keywords

Navigation