Skip to main content

Advertisement

Log in

Why TNF-α inhibition is not sufficient to avoid juxta-articular erosions in chronic arthritis?

  • IM - REVIEW
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

There is an emerging interest in the role of anti-TNF-α therapy in reducing bone damage in chronic arthritis with special regard to rheumatoid arthritis. Accumulation of osteoclasts in rheumatoid synovial tissues, and their activation due to osteoclastogenic cytokines and chemokines at cartilage erosion sites suggest that they may advantageously be considered as therapeutic targets. Given that the primary role of TNF-α in osteoclastogenesis, the inhibition of TNF-α represents an important strategy for reducing bone damage in rheumatoid arthritis. In point of fact, there is evidence that treatment with anti-TNF-α agents may avoid or reduce bone damage in rheumatoid arthritis, even if further studies are required to provide a biological explanation and a link for the observation of the advantageous effects of TNF-α inhibitors on the progression of bone damage in chronic arthritis. The existence of factors involved in osteoclast activation, including IL-1, IL-6, IL-7, IL-11, IL-17, M-CSF, TGF-β, MIP-1α, MIP-1β, IP-10, MIG, and OSCAR, indicates that TNF-α is only a single player in the great molecular cauldron of osteoclastogenesis. The presence of mediators behind the TNF-α and RANK-RANKL complex that may be independent in inducing osteoclastogenesis, such as NFATc1, suggests that the anti-TNF-α therapy will not provide a complete reduction of bone damage in chronic arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bromley M, Woolley DE (1984) Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint. Arthritis Rheum 27:968–975

    Article  PubMed  CAS  Google Scholar 

  2. Gravallese EM, Manning C, Tsay A et al (2000) Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum 43:250–258

    Article  PubMed  CAS  Google Scholar 

  3. Colucci S, Brunetti G, Cantatore FP et al (2007) Lymphocytes and synovial fluid fibroblasts support osteoclastogenesis through RANKL, TNFalpha, and IL-7 in an in vitro model derived from human psoriatic arthritis. J Pathol 212:47–55

    Article  PubMed  CAS  Google Scholar 

  4. Kim HH, Lee DE, Shin JN et al (1999) Receptor activator of NF-κB recruits multiple TRAF family adaptors and activates c-Jun N-terminal kinase. FEBS Lett 443:297–302

    Article  PubMed  CAS  Google Scholar 

  5. Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M (2000) Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-κB ligand (RANKL). J Biol Chem 275:31155–31161

    Article  PubMed  CAS  Google Scholar 

  6. Kobayashi N, Kadono Y, Naito A et al (2001) Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J 20:1271–1280

    Article  PubMed  CAS  Google Scholar 

  7. Bai S, Kitaura H, Zhao H et al (2005) FHL2 inhibits the activated osteoclast in a TRAF6 dependent manner. J Clin Invest 115:2742–2751

    Article  PubMed  CAS  Google Scholar 

  8. Wada T, Nakashima T, Oliveira-dos-Santos AJ et al (2005) The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat Med 11:394–399

    Article  PubMed  CAS  Google Scholar 

  9. David J-P, Sabapathy K, Hoffmann O, Idarraga MH, Wagner EF (2002) JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation- dependent and -independent mechanisms. J Cell Sci 115:4317–4325

    Article  PubMed  CAS  Google Scholar 

  10. Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 40:251–264

    Article  PubMed  CAS  Google Scholar 

  11. Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7:292–304

    Article  PubMed  CAS  Google Scholar 

  12. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T et al (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428:758–763

    Article  PubMed  CAS  Google Scholar 

  13. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J et al (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  PubMed  CAS  Google Scholar 

  14. Simonet WS, Lacey DL, Dunstan CR et al (1997) Osteoprotegerin: a novel-secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  PubMed  CAS  Google Scholar 

  15. Pageau SC (2009) Denosumab. MAbs 1:210–215

    Article  PubMed  Google Scholar 

  16. Weitzmann MN, Cenci S, Rifas L, Brown C, Pacifici R (2000) Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood 96:1873–1878

    PubMed  CAS  Google Scholar 

  17. Hwang SY, Kim JY, Kim KW, Park MK, Moon Y, Kim WU et al (2004) IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Aktdependent pathways. Arthritis Res Ther 6:R120–R128

    Article  PubMed  CAS  Google Scholar 

  18. Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL (2005) IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 115:282–290

    PubMed  CAS  Google Scholar 

  19. Hase H, Kanno Y, Kojima H, Sakurai D, Kobata T (2008) Coculture of osteoclast precursors with rheumatoid synovial fibroblasts induces osteoclastogenesis via transforming growth factor-β mediated down-regulation of osteoprotegerin. Arthritis Rheum 58:3356–3365

    Article  PubMed  CAS  Google Scholar 

  20. Yago T, Nanke Y, Kawamoto M, Furuya T, Kobashigawa T, Kamatani N et al (2007) IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res Ther 9:R96

    Article  PubMed  Google Scholar 

  21. Abe M, Hiura K, Wilde J, Moriyama K, Hashimoto T, Ozaki S et al (2002) Role for macrophage inflammatory protein (MIP)-1α and MIP-1β in the development of osteolytic lesions in multiple myeloma. Blood 100:2195–2202

    PubMed  CAS  Google Scholar 

  22. Kwak HB, Lee SW, Jin HM, Ha H, Lee SH, Takeshita S et al (2005) Monokine induced by interferon-γ is induced by receptor activator of nuclear factor κB ligand and is involved in osteoclast adhesion and migration. Blood 105:2963–2969

    Article  PubMed  CAS  Google Scholar 

  23. Kwak HB, Ha H, Kim HN, Lee JH, Kim HS, Lee S et al (2008) Reciprocal cross-talk between RANKL and interferon-γ-inducible protein 10 is responsible for bone-erosive experimental arthritis. Arthritis Rheum 58:1332–1342

    Article  PubMed  CAS  Google Scholar 

  24. So H, Rho J, Jeong D, Park R, Fisher DE, Ostrowski MC et al (2003) Microphthalmia transcription factor and PU.1 synergistically induce the leukocyte receptor osteoclast-associated receptor gene expression. J Biol Chem 278:24209–24216

    Article  PubMed  CAS  Google Scholar 

  25. Kim K, Kim JH, Lee J, Jin HM, Kook H, Kim KK et al (2007) MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 109:3253–3259

    Article  PubMed  CAS  Google Scholar 

  26. Herman S, Müller RB, Krönke G, Zwerina J, Redlich K, Hueber AJ et al (2008) Induction of osteoclast-associated receptor, a key osteoclast costimulation molecule, in rheumatoid arthritis. Arthritis Rheum 58:3041–3050

    Article  PubMed  CAS  Google Scholar 

  27. Polzer K, Diarra D, Zwerina J, Schett G (2008) Inflammation and destruction of the joints-the Wnt pathway. Joint Bone Spine 75:105–107

    Article  PubMed  CAS  Google Scholar 

  28. Baron R, Rawadi G, Roman-Roman S (2006) Wnt signaling: a key regulator of bone mass. Curr Top Dev Biol 76:103–127

    Article  PubMed  CAS  Google Scholar 

  29. Sen M, Lauterbach K, El-Gabalawy H, Firestein GS, Corr M, Carson DA (2000) Expression and function of wingless and frizzled homologs in rheumatoid arthritis. Proc Natl Acad Sci USA 97:2791–2796

    Article  PubMed  CAS  Google Scholar 

  30. Heiland GR, Zwerina K, Baum W, Kireva T, Distler JH, Grisanti M, Asuncion F et al (2010) Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann Rheum Dis 69:2152–2159

    Article  PubMed  CAS  Google Scholar 

  31. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D et al (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13:156–163

    Article  PubMed  CAS  Google Scholar 

  32. Nakao A, Fukushima H, Kajiya H, Ozeki S, Okabe K (2007) RANKL-stimulated TNFa production in osteoclast precursor cells promotes osteoclastogenesis by modulating RANK signaling pathways. Biochem Biophysl Res Com 357:945–950

    Article  CAS  Google Scholar 

  33. Fuller K, Kirstein B, Chambers TJ (2006) Murine osteoclast formation and function: differential regulation by humoral agents. Endocrinology 147:1979–1985

    Article  PubMed  CAS  Google Scholar 

  34. Abu-Amer Y, Erdmann J, Kollias G, Alexopoulou L, Ross FP, Teitelbaum SL (2000) Tumor necrosis factor receptors types 1 and 2 differentially regulate osteoclastogenesis. J Biol Chem 275:27307–27310

    PubMed  CAS  Google Scholar 

  35. Kaji K, Katogi R, Azuma Y, Naito A, Inoue JI, Kudo A (2001) Tumor necrosis factor alpha-induced osteoclastogenesis requires tumor necrosis factor receptor-associated factor 6. J Bone Miner Res 16:1593–1599

    Article  PubMed  CAS  Google Scholar 

  36. Ochi S, Shinohara M, Sato K, Gober HJ, Koga T, Kodama T, Takai T, Miyasakab N, Takayanagi H (2007) Pathological role of osteoclast costimulation in arthritis-induced bone loss. PNAS 104:11394–11399

    Article  PubMed  CAS  Google Scholar 

  37. Smolen JS, Han C, Bala M, Maini RN, Kalden JR, van der Heijde D, Breedveld FC, Furst DE, Lipsky PE (2005) Evidence of radiographic benefit of treatment with infliximab plus methotrexate in rheumatoid arthritis patients who had no clinical improvement: a detailed subanalysis of data from the anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study. Arthritis Rheum 52:1020–1030

    Article  PubMed  CAS  Google Scholar 

  38. Lange U, Teichmann J, Muller-Ladner U, Strunk J (2005) Increase in bone mineral density of patients with rheumatoid arthritis treated with anti-TNF-α antibody: a prospective open-label pilot study. Rheumatology (Oxford) 44:1546–1548

    Article  CAS  Google Scholar 

  39. Catrina AI, Trollmo C, af Klint E et al (2005) Evidence that anti-tumor necrosis factor therapy with both etanercept and infliximab induces apoptosis in macrophages, but not lymphocytes, in rheumatoid arthritis joints: extended report. Arthritis Rheum 52:61–72

    Article  PubMed  CAS  Google Scholar 

  40. Saito H, Kojima T, Takahashi M, Horne WC, Baron R, Amagasa T, Ohya K, Kazuhiro Aoki K (2007) Tumor necrosis factor receptor loop peptide mimic inhibits bone destruction to the same extent as anti-tumor necrosis factor monoclonal antibody in murine collagen-induced arthritis. Arthr Rheum 56:1164–1174

    Article  CAS  Google Scholar 

  41. Takasaki W, Kajino Y, Kajino K, Murali R, Greene MI (1997) Structure-based design and characterization of exocyclic peptidomimetics that inhibit TNF α binding to its receptor. Nat Biotechnol 15:1266–1270

    Article  PubMed  CAS  Google Scholar 

  42. Aoki K, Saito H, Itzstein C, Ishiguro M, Shibata T, Blanque R et al (2006) TNF-α receptor loop peptide mimic blocks RANK ligand-induced signaling, bone resorption, and bone loss. J Clin Invest 116:1525–1534

    Article  PubMed  CAS  Google Scholar 

  43. Redlich K, Gortz B, Hayer S, Zwerina J, Doerr N, Kostenuik P et al (2004) Repair of local bone erosions and reversal of systemic bone loss upon therapy with anti-tumor necrosis factor in combination with osteoprotegerin or parathyroid hormone in tumor necrosis factor mediated arthritis. Am J Pathol 164:543–555

    Article  PubMed  CAS  Google Scholar 

  44. Saidenberg-Kermanac’h N, Corrado A, Lemeiter D, de Vernejoul MC, Boissier MC, Cohen-Solal ME (2004) TNF-α antibodies and osteoprotegerin decrease systemic bone loss associated with inflammation through distinct mechanisms in collagen-induced arthritis. Bone 35:1200–1207

    Article  PubMed  Google Scholar 

  45. Zwerina J, Hayer S, Tohidast-Akrad M, Bergmeister H, Redlich K, Feige U, Dunstan C, Kollias G, Steiner G, Smolen J, Schett G (2004) Single and combined inhibition of tumor necrosis factor, interleukin-1, and RANKL pathways in tumor necrosis factor-induced arthritis. Arthr Rheum 50:277–290

    Article  CAS  Google Scholar 

  46. Seriolo B, Paolino S, Sulli A, Cutolo M (2006) Are there any positive effects of TNF-alpha blockers on bone metabolism? Reumatismo 58:199–205

    PubMed  CAS  Google Scholar 

  47. Hirose W, Nishikawa K, Hirose M, Nanki T, Sugimoto H (2009) Response of early active rheumatoid arthritis to tumor necrosis factor inhibitors: evaluation by magnetic resonance imaging. Mod Rheumatol 19:20–26

    Article  PubMed  CAS  Google Scholar 

  48. Anandarajah AP, Ory P, Salonen D, Feng C, Wong RL, Ritchlin CT (2010) Effect of adalimumab on joint disease: features of patients with psoriatic arthritis detected by magnetic resonance imaging. Ann Rheum Dis 69:206–209

    Article  PubMed  CAS  Google Scholar 

  49. Yao Z, Li P, Zhang Q, Schwarz EM, Keng P, Arbini A, Boyce BF, Xing L (2006) Tumor necrosis factor-alpha increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. J Biol Chem 281:11846–11855

    Article  PubMed  CAS  Google Scholar 

  50. Musacchio E, Valvason C, Botsios C, Ostuni F, Furlan A, Ramonda R, Modesti V, Sartori L, Punzi L (2009) The tumor necrosis factor-alpha-blocking agent infliximab inhibits interleukin 1beta (IL-1beta) and IL-6 gene expression in human osteoblastic cells. J Rheumatol 36:1575–1579

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Paolo Cantatore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maruotti, N., d’Onofrio, F., Corrado, A. et al. Why TNF-α inhibition is not sufficient to avoid juxta-articular erosions in chronic arthritis?. Intern Emerg Med 7, 15–20 (2012). https://doi.org/10.1007/s11739-011-0526-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-011-0526-6

Keywords

Navigation