Skip to main content

Advertisement

Log in

The conundrum of hyperuricemia, metabolic syndrome, and renal disease

  • IM - Review
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

The level of serum uric acid in human has been increasing over the last decades, and correlates with an increase prevalence of renal disease and metabolic syndrome. Understanding the role of uric acid in these conditions may provide clues for preventing the current epidemic of renal disease. Controversy still remains if hyperuricemia is simply a consequence or a cause of renal disease although epidemiological studies have attempted to resolve this issue. In this review, we discuss the clinical and experimental evidence for a causal role of hyperuricemia in renal diseases and potential relationships of hyperuricemia with metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fishberg AM (1924) The interpretation of increased blood uric acid in hyertension. Arch Int Med 34:503–507

    CAS  Google Scholar 

  2. Hall AP, Barry PE, Dawber TR et al (1967) Epidemiology of gout and hyperuricemia. A long-term population study. Am J Med 42:27–37

    Article  PubMed  CAS  Google Scholar 

  3. Glynn RJ, Campion EW, Silbert JE (1983) Trends in serum uric acid levels 1961–1980. Arthritis Rheum 26:87–93

    Article  PubMed  CAS  Google Scholar 

  4. Enomoto A, Kimura H, Chairoungdua A et al (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417:447–452

    PubMed  CAS  Google Scholar 

  5. Polkowski CA, Grassl SM (1993) Uric acid transport in rat renal basolateral membrane vesicles. Biochim Biophys Acta 1146:145–152

    Article  PubMed  CAS  Google Scholar 

  6. Van Aubel RA, Smeets PH, van den Heuvel JJ et al (2005) Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am J Physiol Renal Physiol 288:F327–F333

    Article  PubMed  CAS  Google Scholar 

  7. Duncan H, Dixon AS (1960) Gout, familial hypericaemia, and renal disease. Q J Med 29:127–135

    PubMed  CAS  Google Scholar 

  8. Talbott JH, Terplan KL (1960) The kidney in gout. Medicine (Baltimore) 39:405–467

    CAS  Google Scholar 

  9. Linnane JW, Burry AF, Emmerson BT (1981) Urate deposits in the renal medulla. Prevalence and associations. Nephron 29:216–222

    PubMed  CAS  Google Scholar 

  10. Hunsicker LG, Adler S, Caggiula A et al (1997) Predictors of the progression of renal disease in the Modification of Diet in Renal Disease Study. Kidney Int 51:1908–1919

    Article  PubMed  CAS  Google Scholar 

  11. Tomita M, Mizuno S, Yamanaka H et al (2000) Does hyperuricemia affect mortality? A prospective cohort study of Japanese male workers. J Epidemiol 10:403–409

    PubMed  CAS  Google Scholar 

  12. Iseki K, Oshiro S, Tozawa M et al (2001) Significance of hyperuricemia on the early detection of renal failure in a cohort of screened subjects. Hypertens Res 24:691–697

    Article  PubMed  CAS  Google Scholar 

  13. Ohno I, Hosoya T, Gomi H et al (2001) Serum uric acid and renal prognosis in patients with IgA nephropathy. Nephron 87:333–339

    Article  PubMed  CAS  Google Scholar 

  14. Tseng CH (2005) Correlation of uric acid and urinary albumin excretion rate in patients with type 2 diabetes mellitus in Taiwan. Kidney Int 68:796–801

    Article  PubMed  CAS  Google Scholar 

  15. Siu Y, Leung K, Tong M et al (2006) Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis 47:51–59

    Article  PubMed  CAS  Google Scholar 

  16. Talaat KM, El-Sheikh AR (2007) The effect of mild hyperuricemia on urinary transforming growth factor beta and the progression of chronic kidney disease. Am J Nephrol 27:435–440

    Article  PubMed  CAS  Google Scholar 

  17. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the antihypertensive, lipid-lowering treatment to prevent heart attack trial (ALLHAT). Jama 2002; 288:2981–2997

  18. Turnbull F (2003) Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet 362:1527–1535

    Article  PubMed  CAS  Google Scholar 

  19. Fletcher A, Amery A, Birkenhager W et al (1991) Risks and benefits in the trial of the European Working Party on High Blood Pressure in the Elderly. J Hypertens 9:225–230

    Article  PubMed  CAS  Google Scholar 

  20. Savage PJ, Pressel SL, Curb JD et al (1998) Influence of long-term, low-dose, diuretic-based, antihypertensive therapy on glucose, lipid, uric acid, and potassium levels in older men and women with isolated systolic hypertension: the systolic hypertension in the Elderly Program. SHEP Cooperative Research Group. Arch Intern Med 158:741–751

    Article  PubMed  CAS  Google Scholar 

  21. Brown MJ, Palmer CR, Castaigne A et al (2000) Morbidity and mortality in patients randomised to double-blind treatment with a long-acting calcium-channel blocker or diuretic in the International Nifedipine GITS study: Intervention as a Goal in Hypertension Treatment (INSIGHT). Lancet 356:366–372

    Article  PubMed  CAS  Google Scholar 

  22. Franse LV, Pahor M, Di Bari M et al (2000) Serum uric acid, diuretic treatment and risk of cardiovascular events in the Systolic Hypertension in the Elderly Program (SHEP). J Hypertens 18:1149–1154

    Article  PubMed  CAS  Google Scholar 

  23. Feig DI, Johnson RJ (2003) Hyperuricemia in childhood primary hypertension. Hypertension 42:247–252

    Article  PubMed  CAS  Google Scholar 

  24. Zoccali C, Maio R, Mallamaci F et al (2006) Uric acid and endothelial dysfunction in essential hypertension. J Am Soc Nephrol 17:1466–1471

    Article  PubMed  CAS  Google Scholar 

  25. Doehner W, Schoene N, Rauchhaus M et al (2002) Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies. Circulation 105:2619–2624

    Article  PubMed  CAS  Google Scholar 

  26. George J, Carr E, Davies J et al (2006) High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation 114:2508–2516

    Article  PubMed  CAS  Google Scholar 

  27. Ford ES, Giles WH, Mokdad AH (2004) Increasing prevalence of the metabolic syndrome among U.S. adults. Diabetes Care 27:2444–2449

    Article  PubMed  Google Scholar 

  28. Facchini F, Chen YD, Hollenbeck CB et al (1991) Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. Jama 266:3008–3011

    Article  PubMed  CAS  Google Scholar 

  29. Chen J, Muntner P, Hamm LL et al (2004) The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med 140:167–174

    PubMed  Google Scholar 

  30. Kobayashi S, Maesato K, Moriya H et al (2005) Insulin resistance in patients with chronic kidney disease. Am J Kidney Dis 45:275–280

    Article  PubMed  CAS  Google Scholar 

  31. Becker B, Kronenberg F, Kielstein JT et al (2005) Renal insulin resistance syndrome, adiponectin and cardiovascular events in patients with kidney disease: the mild and moderate kidney disease study. J Am Soc Nephrol 16:1091–1098

    Article  PubMed  CAS  Google Scholar 

  32. Quinones Galvan A, Natali A, Baldi S et al (1995) Effect of insulin on uric acid excretion in humans. Am J Physiol 268:E1–E5

    PubMed  CAS  Google Scholar 

  33. Muscelli E, Natali A, Bianchi S et al (1996) Effect of insulin on renal sodium and uric acid handling in essential hypertension. Am J Hypertens 9:746–752

    Article  PubMed  CAS  Google Scholar 

  34. Nakagawa T, Tuttle KR, Short RA et al (2005) Hypothesis:fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat Clin Pract Nephorl 1:80–86

    Article  CAS  Google Scholar 

  35. Mazzali M, Hughes J, Kim YG et al (2001) Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 38:1101–1106

    Article  PubMed  CAS  Google Scholar 

  36. Nakagawa T, Mazzali M, Kang DH et al (2003) Hyperuricemia causes glomerular hypertrophy in the rat. Am J Nephrol 23:2–7

    Article  PubMed  Google Scholar 

  37. Sanchez-Lozada LG, Tapia E, Santamaria J et al (2005) Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int 67:237–247

    Article  PubMed  Google Scholar 

  38. Mazzali M, Kanellis J, Han L et al (2002) Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol 282:F991–F997

    PubMed  CAS  Google Scholar 

  39. Kang DH, Nakagawa T, Feng L et al (2002) A role for uric acid in the progression of renal disease. J Am Soc Nephrol 13:2888–2897

    Article  PubMed  CAS  Google Scholar 

  40. Mazzali M, Kim YG, Suga S et al (2001) Hyperuricemia exacerbates chronic cyclosporine nephropathy. Transplantation 71:900–905

    Article  PubMed  CAS  Google Scholar 

  41. Kanabrocki EL, Third JL, Ryan MD et al (2000) Circadian relationship of serum uric acid and nitric oxide. Jama 283:2240–2241

    Article  PubMed  CAS  Google Scholar 

  42. Feig DI, Nakagawa T, Karumanchi SA et al (2004) Hypothesis: Uric acid, nephron number, and the pathogenesis of essential hypertension. Kidney Int 66:281–287

    Article  PubMed  CAS  Google Scholar 

  43. Sautin YY, Nakagawa T, Zharikov S et al (2007) Adverse effects of the classical antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol 293:C584–C596

    Article  PubMed  CAS  Google Scholar 

  44. Waring WS, McKnight JA, Webb DJ et al (2006) Uric acid restores endothelial function in patients with type 1 diabetes and regular smokers. Diabetes 55:3127–3132

    Article  PubMed  CAS  Google Scholar 

  45. Waring WS, Webb DJ, Maxwell SR (2001) Systemic uric acid administration increases serum antioxidant capacity in healthy volunteers. J Cardiovasc Pharmacol 38:365–371

    Article  PubMed  CAS  Google Scholar 

  46. Whiteman M, Halliwell B (1996) Protection against peroxynitrite-dependent tyrosine nitration and alpha 1-antiproteinase inactivation by ascorbic acid. A comparison with other biological antioxidants. Free Radic Res 25:275–283

    Article  PubMed  CAS  Google Scholar 

  47. Skinner KA, White CR, Patel R et al (1998) Nitrosation of uric acid by peroxynitrite. Formation of a vasoactive nitric oxide donor. J Biol Chem 273:24491–24497

    Article  PubMed  CAS  Google Scholar 

  48. Saito I, Saruta T, Kondo K et al (1978) Serum uric acid and the renin-angiotensin system in hypertension. J Am Geriatr Soc 26:241–247

    PubMed  CAS  Google Scholar 

  49. Roncal CA, Mu W, Croker B et al (2007) Effect of elevated serum uric acid on cisplatin-induced acute renal failure. Am J Physiol Renal Physiol 292:F116–122

    Article  PubMed  CAS  Google Scholar 

  50. Sanchez-Lozada LG, Tapia E, Jimenez A et al (2006) Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol 292(1):F423–F429

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiko Nakagawa.

Additional information

Supported by NIH grants HL-68607, DK-52121 and generous funds from Gatorade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, T., Cirillo, P., Sato, W. et al. The conundrum of hyperuricemia, metabolic syndrome, and renal disease. Intern Emerg Med 3, 313–318 (2008). https://doi.org/10.1007/s11739-008-0141-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-008-0141-3

Keywords

Navigation