Skip to main content

Advertisement

Log in

Hyperuricemia: An Intriguing Connection to Metabolic Syndrome, Diabetes, Kidney Disease, and Hypertension

  • Hypertension and Metabolic Syndrome (J Sperati, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Our review explores the epidemiology, physiology, and clinical data surrounding the connection between hyperuricemia and metabolic syndrome, chronic kidney disease, and hypertension.

Recent Findings

Compelling physiologic mechanisms have been proposed to explain a causal relationship between hyperuricemia and metabolic syndrome, chronic kidney disease, and hypertension but clinical studies have given mixed results in terms of whether intervening with hyperuricemia using urate-lowering therapy has any beneficial effects for patients with these conditions.

Summary

Despite the large amount of research already put into this topic, more randomized placebo-controlled trials are needed to more firmly establish whether a cause-effect relationship exists and whether lowering uric acid levels in patients with these conditions is beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

No raw data or materials were used for this literature review.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Xiangwei WU, Muzny DM, Cheng Chi Lee, Caskey CT. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol. 1992;34(1):78-84. https://www.ncbi.nlm.nih.gov/pubmed/1556746. https://doi.org/10.1007/BF00163854.

  2. Endou H, Enomoto A, Kimura H, et al. Molecular identification of a renal urate-anion exchanger that regulates blood urate levels. Nature (London). 2002;417(6887):447-452. https://www.ncbi.nlm.nih.gov/pubmed/12024214. https://doi.org/10.1038/nature742.

  3. Edwards NL. The role of hyperuricemia and gout in kidney and cardiovascular disease. Cleve Clin J Med. 2008;75(Suppl 5):S13-S16. http://www.ccjm.org/content/75/Suppl_5/S13.abstract. https://doi.org/10.3949/ccjm.75.Suppl_5.S13.

  4. Johnson RJ, Kang D, Feig D, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension. 2003;41(6):1183-1190. http://hyper.ahajournals.org/cgi/content/abstract/41/6/1183. https://doi.org/10.1161/01.HYP.0000069700.62727.C5.

  5. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol. 2007;293(2):584-596. http://ajpcell.physiology.org/content/293/2/C584. https://doi.org/10.1152/ajpcell.00600.2006.

  6. Corry DB, Eslami P, Yamamoto K, Nyby MD, Makino H, Tuck ML. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin–angiotensin system. J Hypertension. 2008;26(2):269-275. https://www.ncbi.nlm.nih.gov/pubmed/18192841. https://doi.org/10.1097/HJH.0b013e3282f240bf.

  7. Kang D, Park S, Lee I, Johnson RJ. Uric acid–induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells. J Am Soc Nephrology. 2005;16(12):3553-3562. https://doi.org/10.1681/ASN.2005050572.

  8. Ginsberg MH, Kozin F, O'Malley M, McCarty DJ. Release of platelet constituents by monosodium urate crystals. J Clin Investig. 1977;60(5):999-1007. https://www.ncbi.nlm.nih.gov/pubmed/908764. https://doi.org/10.1172/JCI108880.

  9. Nakagawa T, Mazzali M, Kang D, Sánchez-Lozada LG, Herrera-Acosta J, Johnson RJ. Uric acid – A uremic toxin? Blood Purif. 2005;24(1):67-70. https://www.karger.com/Article/Abstract/89440. https://doi.org/10.1159/000089440.

  10. Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck ML. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension. 2003;42(4):474-480. http://hyper.ahajournals.org/cgi/content/abstract/42/4/474. https://doi.org/10.1161/01.HYP.0000091371.53502.D3.

  11. Nakanishi N, Okamoto M, Yoshida H, Matsuo Y, Suzuki K, Tatara K. Serum uric acid and risk for development of hypertension and impaired fasting glucose or type II diabetes in Japanese male office workers. Euro J Epidemiol. 2003;18(6):523-530. https://www.jstor.org/stable/3582904. https://doi.org/10.1023/A:1024600905574.

  12. Sundstrom J, Sullivan L, D'Agostino RB, Levy D, Kannel WB, Vasan RS. Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence. Hypertension. 2005;45(1):28-33. http://hyper.ahajournals.org/cgi/content/abstract/45/1/28. https://doi.org/10.1161/01.HYP.0000150784.92944.9a.

  13. De Leeuw PW, Thijs L, Rosenfeld JJ, et al. Prognostic significance of renal function in elderly patients with isolated systolic hypertension: results from the syst-eur trial. J Am Soc Nephrol. 2002;13(9):2213-2222. https://www.ncbi.nlm.nih.gov/pubmed/12191965. https://doi.org/10.1097/01.ASN.0000027871.86296.92.

  14. Bickel C, Rupprecht HJ, Blankenberg S, et al. Serum uric acid as an independent predictor of mortality in patients with angiographically proven coronary artery disease. Am J Cardiol. 2002;89(1):12–7.

  15. Kang D, Finch J, Nakagawa T, et al. Uric acid, endothelial dysfunction and pre-eclampsia: searching for a pathogenetic link. J Hypertension. 2004;22(2):229-235. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00004872-200402000-00001. https://doi.org/10.1097/00004872-200402000-00001.

  16. Laughon SK, Catov J, Provins T, Roberts JM, Gandley RE. Elevated first-trimester uric acid concentrations are associated with the development of gestational diabetes. Am J Obstet Gynecol. 2009;201(4):402.e1-402.e5. https://www.clinicalkey.es/playcontent/1-s2.0-S0002937809007601. https://doi.org/10.1016/j.ajog.2009.06.065.

  17. Beberashvili I, Sinuani I, Azar A, Shapiro G, Feldman L, Stav K, Sandbank J, Averbukh Z Serum uric acid as a clinically useful nutritional marker and predictor of outcome in maintenance hemodialysis patients. Nutrition (Burbank, Los Angeles County, Calif.). 2015;31(1):138-147. https://www.clinicalkey.es/playcontent/1-s2.0-S0899900714003335. https://doi.org/10.1016/j.nut.2014.06.012.

  18. Bellomo G. Uric acid and chronic kidney disease: a time to act? World J Nephrol. 2013;2(2):17-25. http://lib.cqvip.com/qk/61591X/201302/83908883504849514850484849.html. https://doi.org/10.5527/wjn.v2.i2.17.

  19. Facchini F, Chen Y-I, Hollenbeck CB, Reaven GM. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA-J Am Med Assoc. 1991;266(21):3008–11. https://doi.org/10.1001/jama.1991.03470210076036.

    Article  CAS  Google Scholar 

  20. Tang L, Kubota M, Nagai A, Mamemoto K, Tokuda M. Hyperuricemia in obese children and adolescents: the relationship with metabolic syndrome. Pedia Rep. 2010;2(1):e12. https://www.ncbi.nlm.nih.gov/pubmed/21589837. https://doi.org/10.4081/pr.2010.e12.

  21. Choi HK, Ford ES. Prevalence of the metabolic syndrome in individuals with hyperuricemia. Am J Med. 2007;120(5):442-447. https://www.clinicalkey.es/playcontent/1-s2.0-S0002934306008904. https://doi.org/10.1016/j.amjmed.2006.06.040.

  22. Nakagawa T, Hu H, Zharikov S, et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2006;290(3):625-631. http://ajprenal.physiology.org/content/290/3/F625. https://doi.org/10.1152/ajprenal.00140.2005.

  23. Sanchez-Lozada LG, Tapia E, Bautista-Garcia P, et al. Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2008;294(4):710-718. http://ajprenal.physiology.org/content/294/4/F710. https://doi.org/10.1152/ajprenal.00454.2007.

  24. Quinones Galvan A, Natali A, Baldi S, et al. Effect of insulin on uric acid excretion in humans. Am J Physiol Endocrinol Metab. 1995;268(1):E1-E5. http://ajpendo.physiology.org/cgi/content/abstract/268/1/E1. https://doi.org/10.1152/ajpendo.1995.268.1.E1.

  25. Ishiro M, Takaya R, Mori Y, et al. Association of uric acid with obesity and endothelial dysfunction in children and early adolescents. Ann Nutr Metab. 2013;62(2):169-176. https://www.jstor.org/stable/48507792. https://doi.org/10.1159/000346227.

  26. Hallfrisch, J. (National Institute on Aging, Baltimore, MD). Metabolic effects of dietary fructose. The FASEB J. 1990;4(9):2652-2660. https://agris.fao.org/agris-search/search.do?recordID=US9041786. https://doi.org/10.1096/fasebj.4.9.2189777.

  27. Khosla UM, Zharikov S, Finch JL, et al. Hyperuricemia induces endothelial dysfunction. Kidney Int. 2005;67(5):1739–42. https://doi.org/10.1111/j.1523-1755.2005.00273.x.

    Article  PubMed  Google Scholar 

  28. Nakagawa T, Tuttle KR, Short RA, Johnson RJ. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat Clin Pract Nephrol. 2005;1(2):80–6. https://doi.org/10.1038/ncpneph0019.

    Article  CAS  PubMed  Google Scholar 

  29. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Investig. 2004;114(12):1752-1761. https://www.ncbi.nlm.nih.gov/pubmed/15599400. https://doi.org/10.1172/JCI200421625.

  30. Ryu S, Song J, Choi BY, Lee SJ, Kim WS, Chang Y, Kim DI, Suh BS, Sung KC. Incidence and risk factors for metabolic syndrome in Korean male workers, ages 30 to 39. Ann Epidemiol. 2007;17(4):245-252. https://www.clinicalkey.es/playcontent/1-s2.0-S1047279706002547. https://doi.org/10.1016/j.annepidem.2006.10.001.

  31. Dehghan A, van Hoek M, Sijbrands EJG, Hofman B, Witteman J. High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes Care. 2008;31(2):361-362. http://care.diabetesjournals.org/content/31/2/361.abstract. https://doi.org/10.2337/dc07-1276.

  32. Niskanen L, Laaksanen DE, Lindstrom J, et al. Serum uric acid as a harbinger of metabolic outcome in subjects with impaired glucose tolerance: the Finnish diabetes prevention study. Diabetes Care. 2006;29(3):709-711. https://www.ncbi.nlm.nih.gov/pubmed/16505534. https://doi.org/10.2337/diacare.29.03.06.dc05-1465.

  33. Sui X, Church TS, Meriwether RA, Lobelo F, Blair SN. Uric acid and the development of metabolic syndrome in women and men. Metab Clin Exp. 2008;57(6):845-852. https://www.clinicalkey.es/playcontent/1-s2.0-S0026049508000632. https://doi.org/10.1016/j.metabol.2008.01.030.

  34. Rubio-Guerra AF, Morales-López H, Garro-Almendaro AK, et al. Circulating levels of uric acid and risk for metabolic syndrome. Curr Diabetes Rev. 2017;13(1):87. https://www.ncbi.nlm.nih.gov/pubmed/26419665.

  35. Chen W, Fu Y, Zhou M. The bidirectional relationship between metabolic syndrome and hyperuricemia in china: a longitudinal study from CHARLS. Endocrine. 2022;76(1):62-69. https://doi.org/10.1007/s12020-022-02979-z.

  36. Johnson RJ, Perez-Pozo SE, Sautin YY, et al. Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes? Endocrine Rev. 2009;30(1):96–116. https://doi.org/10.1210/er.2008-0033.

    Article  CAS  Google Scholar 

  37. Sánchez-Lozada LG, Mu W, Roncal C, et al. Comparison of free fructose and glucose to sucrose in the ability to cause fatty liver. Eur J Nutr. 2009;49(1):1-9. https://doi.org/10.1007/s00394-009-0042-x.

  38. Bocarsly ME, Powell ES, Avena NM, Hoebel BG. High-fructose corn syrup causes characteristics of obesity in rats: increased body weight, body fat and triglyceride levels. Pharmacol Biochem Behav. 2010;97(1):101–6. https://doi.org/10.1016/j.pbb.2010.02.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Havel PJ. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev. 2005;63(5):133–57.

    Article  PubMed  Google Scholar 

  40. Cox CL, Stanhope KL, Keim NL, et al. Consumption of fructose-sweetened beverages for 10 weeks reduces net fat oxidation and energy expenditure in overweight obese men and women. Euro J Clin Nutr. 2012;66(2):201–8. https://doi.org/10.1038/ejcn.2011.159.

    Article  CAS  Google Scholar 

  41. Reunjui S, Roncal CA, Wei MU, et al. Thiazide diuretics exacerbate fructose-induced metabolic syndrome. J Am Soc Nephrol. 2007;18(10):2724-2731. https://www.ncbi.nlm.nih.gov/pubmed/17855639. https://doi.org/10.1681/ASN.2007040416.

  42. Jacob S. Patient with beer belly or hypertension. check for a metabolic syndrome! MMW Fortschr Med. 2005;147(9):45. https://www.ncbi.nlm.nih.gov/pubmed/15794356.

  43. Kappaganthu A, Sachan J, Shailaja G. Hyperuricemia in early pregnancy: a marker for gestational diabetes mellitus. IOSR J Dent Med Sci. 2014;13(12):51–4. https://doi.org/10.9790/0853-131265154.

    Article  Google Scholar 

  44. Haig A. Uric acid as a factor in the causation of disease. 4th ed., with sixty-five illustrations. ed. London: J. & A. Churchill; 1897. http://catalog.crl.edu/record=b1040761.

  45. Johnson RJ, Kivlighn SD, Kim Y, Suga S, Fogo AB. Reappraisal of the pathogenesis and consequences of hyperuricemia in hypertension, cardiovascular disease, and renal disease. Am J Kidney Dis. 1999;33(2):225–34. https://doi.org/10.1016/S0272-6386(99)70295-7

  46. •• Sellmayr M, Hernandez Petzsche MR, Ma Q, et al. Only hyperuricemia with crystalluria, but not asymptomatic hyperuricemia, drives progression of chronic kidney disease. Clin J Am Soc Nephrol. 2020;31(12):2773-2792. https://www.narcis.nl/publication/RecordID/oai:pure.eur.nl:publications%2Fce579fb7-10e7-4492-8f5b-a66c294ff1d6. https://doi.org/10.1681/ASN.2020040523. In a novel mouse model, the authors prove that the uric acid causes tubular injury, inflammation, fibrosis, and granulomatosis interstitial nephritis.

  47. Lee TH, Chen J, Wu C, Yang C, Yang H. Hyperuricemia and progression of chronic kidney disease: a review from physiology and pathogenesis to the role of urate-lowering therapy. Diagnostics (Basel). 2021;11(9):1674. https://search.proquest.com/docview/2576393675. https://doi.org/10.3390/diagnostics11091674.

  48. Iseki K, Oshiro S, Tozawa M, Iseki C, Ikemiya Y, Taskishita S. Significance of hyperuricemia on the early detection of renal failure in a cohort of screened subjects. Hypertension Res. 2001;24(6):691-697. https://www.jstage.jst.go.jp/article/hypres/24/6/24_6_691/_article/-char/en. https://doi.org/10.1291/hypres.24.691.

  49. Weiner DE, Tighiouart H, Elsayed EF, Griffith JL, Salem DN, Levey AS. Uric acid and incident kidney disease in the community. J Am Soc Nephrol. 2008;19(6):1204-1211. https://www.ncbi.nlm.nih.gov/pubmed/18337481. https://doi.org/10.1681/ASN.2007101075.

  50. Chen N, Wang W, Huang Y, et al. Community-based study on CKD subjects and the associated risk factors. Nephrol Dial Transplant. 2009;24(7):2117-2123. https://api.istex.fr/ark:/67375/HXZ-TDF816C3-S/fulltext.pdf. https://doi.org/10.1093/ndt/gfn767.

  51. Chen Y, Su C, Wang S, Lee H, Lin S. A preliminary investigation of the association between serum uric acid and impaired renal function. Chang Gung Med J. 2009;32(1):66-71. https://www.ncbi.nlm.nih.gov/pubmed/19292941.

  52. Hsu C, Iribarren C, McCulloch CE, Darbinian J, Go AS. Risk factors for end-stage renal disease: 25-year follow-up. Arch Intern Med. (1960). 2009;169(4):342-350. https://doi.org/10.1001/archinternmed.2008.605

  53. •• Kochi M, Kohagura K, Oshiro N, et al. Association of blood pressure and hyperuricemia with proteinuria and reduced renal function in the general population. Hypertension Res. 2023. https://www.ncbi.nlm.nih.gov/pubmed/36991065https://doi.org/10.1038/s41440-023-01250-w. The authors found a strong association between hypertension and proteinuria in patients with hyperuricemia when compared with subjects without hyperuricemia.

  54. Sofue T. Hyperuricemia: the third key player for nephrosclerosis with ischemia. Hypertens Res. 2023. https://www.ncbi.nlm.nih.gov/pubmed/37081158. https://doi.org/10.1038/s41440-023-01294-y.

  55. Chonchol M, Shlipak MG, Katz R, Sarnak MJ, Newman AB, Siscovick DS, Kestenbaum B, Carney JK, Fried LF. Relationship of uric acid with progression of kidney disease. Am J Kidney Dis. 2007;50(2):239-247. https://www.clinicalkey.es/playcontent/1-s2.0-S0272638607008323. https://doi.org/10.1053/j.ajkd.2007.05.013.

  56. Sturm G, Kollerits B, Neyer U, Ritz E, Kronenberg F. Uric acid as a risk factor for progression of non-diabetic chronic kidney disease? the mild to moderate kidney disease (MMKD) study. Expe Gerontol. 2008;43(4):347–52. https://doi.org/10.1016/j.exger.2008.01.006.

    Article  CAS  Google Scholar 

  57. Suliman ME, Johnson RJ, García-López E, et al. J-shaped mortality relationship for uric acid in CKD. Am J Kidney Dis. 2006;48(5):761–71. https://doi.org/10.1053/j.ajkd.2006.08.019.

    Article  CAS  PubMed  Google Scholar 

  58. Beberashvili I, Erlich A, Azar A, et al. Longitudinal study of serum uric acid, nutritional status, and mortality in maintenance hemodialysis patients. Clin J Am Soc Nephrol. 2016;11(6):1015-1023. https://www.ncbi.nlm.nih.gov/pubmed/27026520. https://doi.org/10.2215/CJN.10400915.

  59. Kalantar E, Khalili N, Hossieni M-, Rostami Z, Einollahi B. Hyperuricemia after renal transplantation. Transplant Proc. 2011;43(2):584-585. https://www.clinicalkey.es/playcontent/1-s2.0-S0041134511000637. https://doi.org/10.1016/j.transproceed.2011.01.062.

  60. Kim KM, Kim S, Han DJ, Yang WS, Park JS, Park SK. Hyperuricemia in kidney transplant recipients with intact graft function. Transplant Proc. 2010;42(9):3562-3567. https://www.clinicalkey.es/playcontent/1-s2.0-S0041134510012972.

  61. Malheiro J, Almeida M, Fonseca I, et al. Hyperuricemia in adult renal allograft recipients: prevalence and predictors. Transplant Proc. 2012;44(8):2369-2372. https://www.clinicalkey.es/playcontent/1-s2.0-S0041134512007294. https://doi.org/10.1016/j.transproceed.2012.07.033.

  62. Numakura K, Satoh S, Kagaya H, et al. Hyperuricemia at 1 year after renal transplantation, its prevalence, associated factors, and graft survival. Transplant. 2012;94(2):145-151. https://www.ncbi.nlm.nih.gov/pubmed/22728291. https://doi.org/10.1097/TP.0b013e318254391b.

  63. Gerhardt U, Große Hüttmann M, Hohage H. Influence of hyperglycemia and hyperuricemia on long-term transplant survival in kidney transplant recipients. Clin Transplant. 1999;13(5):375-379. https://api.istex.fr/ark:/67375/WNG-WHGCFHNZ-8/fulltext.pdf. https://doi.org/10.1034/j.1399-0012.1999.130502.x.

  64. Armstrong KA, Johnson DW, Campbell SB, Isbel NM, Hawley CM. Does uric acid have a pathogenetic role in graft dysfunction and hypertension in renal transplant recipients? Transplant. 2005;80(11):1565-1571. https://www.ncbi.nlm.nih.gov/pubmed/16371927. https://doi.org/10.1097/01.tp.0000183895.88572.13.

  65. Haririan A, Noguiera JM, Zandi-Nejad K, et al. The independent association between serum uric acid and graft outcomes after kidney transplantation. Transplantation. 2010;89(5):573-579. https://www.ncbi.nlm.nih.gov/pubmed/19997058. https://doi.org/10.1097/TP.0b013e3181c73c18.

  66. Han M, Lee JP, Park S, et al. Early onset hyperuricemia is a prognostic marker for kidney graft failure: propensity score matching analysis in a Korean multicenter cohort. PLoS ONE. 2017;12(6). https://explore.openaire.eu/search/publication?articleId=od_______267::cc09b79f1deda615ed0575ee99908162. https://doi.org/10.1371/journal.pone.0179779.

  67. Aakalin E, Venkatesh Ganeshan S, Winston J, Muntner P. Hyperuricemia is associated with the development of the composite outcomes of new cardiovascular events and chronic allograft nephropathy. Transplantation. 2008;86(5):652-658. https://www.ncbi.nlm.nih.gov/pubmed/18791445. https://doi.org/10.1097/TP.0b013e3181814f5b.

  68. Kalil RS, Carpenter MA, Ivanova A, et al. Impact of hyperuricemia on long-term outcomes of kidney transplantation: analysis of the FAVORIT study. Am J Kidney Dis. 2017;70(6):762–9. https://doi.org/10.1053/j.ajkd.2017.06.013.

    Article  CAS  PubMed  Google Scholar 

  69. Kim DG, Choi HY, Kim HY, et al. Association between post-transplant serum uric acid levels and kidney transplantation outcomes. PLoS ONE. 2018;13(12):e0209156. https://www.ncbi.nlm.nih.gov/pubmed/30550582. https://doi.org/10.1371/journal.pone.0209156.

  70. Siu Y, Leung K, Tong MK, Kwan T. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis. 2006;47(1):51–9. https://doi.org/10.1053/j.ajkd.2005.10.006.

    Article  CAS  PubMed  Google Scholar 

  71. Goicoechea M, de Vinuesa SG, Verdalles U, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol. 2010;5(8):1388-1393. http://cjasn.asnjournals.org/content/5/8/1388.abstract. https://doi.org/10.2215/CJN.01580210.

  72. Sircar D, Chatterjee S, Waikhom R, Golay V, Raychaudhury A, Chatterjee S, Pandey R. Efficacy of febuxostat for slowing the GFR decline in patients with CKD and asymptomatic hyperuricemia: a 6-month, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis. 2015;66(6):945-950. https://www.clinicalkey.es/playcontent/1-s2.0-S027263861500846X. https://doi.org/10.1053/j.ajkd.2015.05.017.

  73. Bose B, Badve SV, Hiremath SS, et al. Effects of uric acid-lowering therapy on renal outcomes: a systematic review and meta-analysis. Nephrol Dial Transplant. 2014;29(2):406-413. https://www.ncbi.nlm.nih.gov/pubmed/24042021. https://doi.org/10.1093/ndt/gft378.

  74. Badve SV, Pascoe EM, Tiku A, et al. Effects of allopurinol on the progression of chronic kidney disease. N Engl J Med. 2020;382(26). http://handle.unsw.edu.au/1959.4/unsworks_76546. https://doi.org/10.1056/NEJMoa1915833.

  75. Doria A, Galecki AT, Spino C, et al. Serum urate lowering with allopurinol and kidney function in type 1 diabetes. N Engl J Med. 2020;382(26):2493-2503. https://doi.org/10.1056/NEJMoa1916624.

  76. Kimura K, Hosoya T, Uchida S, et al. Febuxostat therapy for patients with stage 3 CKD and asymptomatic hyperuricemia: a randomized trial. Am J Kidney Dis. 2018;72(6):798–810. https://doi.org/10.1053/j.ajkd.2018.06.028.

    Article  CAS  PubMed  Google Scholar 

  77. Mazzali M, Kanbay M, Segal MS, et al. Uric acid and hypertension: cause or effect? Curr Rheumatol Rep. 2010;12(2):108-117. https://doi.org/10.1007/s11926-010-0094-1.

  78. Forman JP, Choi H, Curhan GC. Uric acid and insulin sensitivity and risk of incident hypertension. Arch Intern Med (1960). 2009;169(2):155-162. https://doi.org/10.1001/archinternmed.2008.521.

  79. Krishnan E, Kwoh CK, Schumacher HR, Kuller L. Hyperuricemia and incidence of hypertension among men without metabolic syndrome. Hypertension. 2007;49(2):298-303. http://hyper.ahajournals.org/cgi/content/abstract/49/2/298. https://doi.org/10.1161/01.HYP.0000254480.64564.b6.

  80. Perlstein TS, Gumieniak O, Williams GH, et al. Uric acid and the development of hypertension: the normative aging study. Hypertension. 2006;48(6):1031-1036. http://hyper.ahajournals.org/cgi/content/abstract/48/6/1031. https://doi.org/10.1161/01.HYP.0000248752.08807.4c.

  81. Mellen PB, Bleyer AJ, Erlinger TP, et al. Serum uric acid predicts incident hypertension in a biethnic cohort: the atherosclerosis risk in communities study. Hypertension. 2006;48(6):1037-1042. http://hyper.ahajournals.org/cgi/content/abstract/48/6/1037. https://doi.org/10.1161/01.HYP.0000249768.26560.66.

  82. Mazzali M, Hughes J, Kim Y, et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension. 2001;38(5):1101-1106. http://hyper.ahajournals.org/cgi/content/abstract/38/5/1101. https://doi.org/10.1161/hy1101.092839.

  83. Segal MS, Srinivas TR, Mohandas R, Shuster JJ, Wen X, Whidden E, Tantravahi J, Johnson RJ. The effect of the addition of allopurinol on blood pressure control in African Americans treated with a thiazide-like diuretic. Am J Hypertens. 2015;9(8):610-619.e1. https://www.clinicalkey.es/playcontent/1-s2.0-S1933171115004799. https://doi.org/10.1016/j.jash.2015.05.009.

  84. Gunawardhana L, McLean L, Punzi HA, et al. Effect of febuxostat on ambulatory blood pressure in subjects with hyperuricemia and hypertension: a phase 2 randomized Placebo‐Controlled study. Am Heart J. 2017;6(11):n/a. https://doi.org/10.1161/JAHA.117.006683.

  85. Yanik M, Feig D. Serum urate: a biomarker or treatment target in pediatric hypertension? Curr Opin Cardiol. 2013;28(4):433-438. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00001573-201307000-00009. https://doi.org/10.1097/HCO.0b013e32836205ff.

  86. Feig DI, Johnson RJ. Hyperuricemia in childhood primary hypertension. Hypertension. 2003;42(3):247-252. http://hyper.ahajournals.org/cgi/content/abstract/42/3/247. https://doi.org/10.1161/01.HYP.0000085858.66548.59.

  87. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA : J Am Med Assoc. 2008;300(8):924–32. https://doi.org/10.1001/jama.300.8.924.

    Article  CAS  Google Scholar 

  88. Giallauria F, Predotti P, Casciello A, et al. Serum uric acid is associated with non-dipping circadian pattern in young patients (30-40 years old) with newly diagnosed essential hypertension. Clin Expe Hypertens (1993). 2016;38(2):233-237. https://doi.org/10.3109/10641963.2015.1081230.

  89. Ahbap E, Sakaci T, Kara E, et al. Serum uric acid levels and inflammatory markers with respect to dipping status: a retrospective analysis of hypertensive patients with or without chronic kidney disease. Clin Expe Hypertens (1993). 2016;38(6):555-563. https://doi.org/10.3109/10641963.2016.1174251.

  90. Turak O, Özcan F, Tok D, et al. Serum uric acid, inflammation, and nondipping circadian pattern in essential hypertension. J Clin Hypertens (1993) (Greenwich, Conn.). 2013;15(1):7-13. https://doi.org/10.1111/jch.12026.

  91. Soltani Z, Rasheed K, Kapusta DR, Reisin E. Potential role of uric acid in metabolic syndrome, hypertension, kidney injury, and cardiovascular diseases: is it time for reappraisal? Curr Hypertens Rep. 2013;15(3):175-181. https://doi.org/10.1007/s11906-013-0344-5.

  92. Laura G. Sánchez-Lozada, Edilia Tapia, Rubén López-Molina, et al. Effects of acute and chronic l-arginine treatment in experimental hyperuricemia. Am J Physiol Renal Physiol. 2007;292(4):1238-1244. http://ajprenal.physiology.org/content/292/4/F1238. https://doi.org/10.1152/ajprenal.00164.2006.

  93. Mazzali M, Kanellis J, Han L, et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol. 2002;282(6):991-997. http://ajprenal.physiology.org/content/282/6/F991. https://doi.org/10.1152/ajprenal.00283.2001.

  94. Yamagishi T. Effects of xanthine oxidase inhibitors on blood pressure, baPWV, carotid arterial IMT and elastic modulus in hypertensive patients with hyperuricemia. J Hypertens. 2019;37: e105. https://doi.org/10.1097/01.hjh.0000571356.43815.16.

    Article  Google Scholar 

  95. Bove M, Cicero AFG, Borghi C. The effect of xanthine oxidase inhibitors on blood pressure and renal function. Curr Hypertens Rep. 2017;19(12):95-6. https://doi.org/10.1007/s11906-017-0793-3. https://doi.org/10.1007/s11906-017-0793-3.

  96. Hamada T, Ichida K, Hosoyamada M, et al. Uricosuric action of losartan via the inhibition of urate transporter 1 (URAT 1) in hypertensive patients. Am J Hypertens. 2008;21(10):1157-1162. https://api.istex.fr/ark:/67375/HXZ-SBBS4893-C/fulltext.pdf. https://doi.org/10.1038/ajh.2008.245.

  97. Nishida Y, Takahashi Y, Susa N, Kanou N, Nakayama T, Asai S. Comparative effect of angiotensin II type I receptor blockers on serum uric acid in hypertensive patients with type 2 diabetes mellitus: a retrospective observational study. Cardiovasc Diabetol. 2013;12(1):159. https://www.ncbi.nlm.nih.gov/pubmed/24180232. https://doi.org/10.1186/1475-2840-12-159.

  98. •• Gaffo AL, Calhoun DA, Rahn EJ, et al. Effect of serum urate lowering with allopurinol on blood pressure in young adults: a randomized, controlled, crossover trial. Arthritis & rheumatology (Hoboken, N.J.). 2021;73(8):1514-1522. https://doi.org/10.1002/art.41749. This is a single center randomized double blind crossover clinical trial examining differences in allopurinol vs placebo on patients with hypertension. Despite seeing differences in flow mediated dilation (a marker of endothelial dysfunction), no significant improvements in BP lowering was found in the allopurinol group.

  99. Agarwal V, Hans N, Messerli FH. Effect of allopurinol on blood pressure: a systematic review and meta‐analysis. J Clin Hypertens (Greenwich, Conn.). 2013;15(6):435-442. https://doi.org/10.1111/j.1751-7176.2012.00701.x

  100. Gois P SE. Pharmacotherapy for hyperuricemia in hypertensive patients. https://pubmed.ncbi.nlm.nih.gov/23440832/.

  101. Gois PLW, Seguro A. Allopurinol on hypertension: insufficient evidence to recommend. J Clin Hypertens. 2013;15(9):700.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Current Stem Cell Reports is grateful to Dr. Suzanne Oparil for her review of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R.V., A.P., and E.R. wrote the main manuscript text, and all three authors also reviewed the final manuscript

Corresponding author

Correspondence to Efrain Reisin.

Ethics declarations

Ethical Approval

Not applicable as this was a literature review.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vareldzis, R., Perez, A. & Reisin, E. Hyperuricemia: An Intriguing Connection to Metabolic Syndrome, Diabetes, Kidney Disease, and Hypertension. Curr Hypertens Rep (2024). https://doi.org/10.1007/s11906-024-01295-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11906-024-01295-3

Keywords

Navigation