Skip to main content
Log in

Identification and expression analysis of genes involved in somatic embryogenesis of banana

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Somatic embryogenesis (SE) is a process in which somatic cells go through morphological and biochemical changes to form somatic embryos. These embryos are capable of regenerating into new plants. The present study aims to understand the molecular basis of these changes during the different stages of SE in banana cv. Grand Naine. 16 SE related genes belonging to 8 gene families i.e. PINHEADED (PIN), YUCCA (YUC), PICKLE (PKL), TOPOISOMERASE (TOP), HISTINE KINASES (CRE), SOMATIC CELL RECEPTOR KINASE (SERK), GLOBULIN (GLB), and KNOTTED (KNAT) were identified from the banana genome database. In-silico analysis of all 16 genes was performed to find out their structural features, phylogenetic relationship, subcellular, and chromosomal localization. Phylogenetic analysis of these genes with their homologs in other plant species (gymnosperm, monocot, and dicot) confirmed their close evolutionary association with monocot. We studied the differential expression pattern of all 16 genes for the exposure of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in callus, embryogenic cell suspension (ECS), and non-embryogenic cell suspension (NECS) cultures of cv. Grand Naine. The higher expression of MaPIN1 in embryogenic callus and ECS suggests its possible role in SE of banana. The prominent expression of MaCRE2 and MaCRE3 found in NECS revealed that these genes might be involved in other cell functions except embryogenesis. The present study reported that MaPIN1 could be a potential marker for the embryogenicity in banana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anami S, Njuguna E, Coussens G, Aesaert S, Van Lijsebettens M (2013) Higher plant transformation: principles and molecular tools. Int J Dev Biol 57:483–494

    Article  PubMed  CAS  Google Scholar 

  • Bai B, Su YH, Yuan J, Zhang XS (2013) Induction of somatic embryos in arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6:1247–1260

    Article  PubMed  CAS  Google Scholar 

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173

    Article  CAS  Google Scholar 

  • Balestrazzi A, Bernacchia G, Pitto L, Luccarini G, Carbonera D (2001) Spatial expression of DNA topoisomerase I genes during cell proliferation in Daucus carota. Eur J Histochem 45:31

    Article  PubMed  CAS  Google Scholar 

  • Balzan S, Johal GS, Carraro N (2014) The role of auxin transporters in monocots development. Front Plant Sci 5:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker DK, Dugdale B, Smith MK, Harding RM, Dale JL (2000) Genetic transformation of Cavendish banana (Musa spp. AAA group) cv ‘Grand Naine’ via microprojectile bombardment. Plant Cell Rep 19:229–234

    Article  CAS  PubMed  Google Scholar 

  • Belles-Boix E, Hamant O, Witiak SM, Morin H, Traas J, Pautot V (2006) KNAT6: an arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell 18:1900–1907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Che P, Gingerich DJ, Lall S, Howell SH (2002) Global and hormone-induced gene expression changes during shoot development in arabidopsis. Plant Cell 14:2771–2785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chugh A, Khurana P (2003) Gene expression during somatic embryogenesis. Curr Sci 83:715–730

    Google Scholar 

  • Cote FX, Domergue R, Monmarson S, Schwendiman J, Teisson C, Escalant JV (1996) Embryogenic cell suspensions from the male flower of Musa AAA cv. Grand nain. Physiol Plant 97:285–290

    Article  CAS  Google Scholar 

  • Dash PK, Rai R (2016) Translating the “banana genome” to delineate stress resistance, dwarfing, parthenocarpy and mechanisms of fruit ripening. Front Plant Sci 7:1543. https://doi.org/10.3389/fpls.2016.01543

    Article  PubMed  PubMed Central  Google Scholar 

  • Deo PC, Tyagi AP, Taylor M, Harding R, Becker D (2010) Factors affecting somatic embryogenesis and transformation in modern plant breeding. S Pac J Nat Appl Sci 28:27–40

    Article  Google Scholar 

  • Duncan DR, Kriz AL, Paiva R, Widholm JM (2003) Globulin-1 gene expression in regenerable Zea mays (maize) callus. Plant Cell Rep 2:684–689

    Google Scholar 

  • Elayabalan S, Kalaimughilan K (2013) Genetic engineering in banana and plantain. Adv Genet Eng 2:2169-0111

    Google Scholar 

  • Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2003) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in arabidopsis. Nature 415:806–809

    Article  Google Scholar 

  • Gliwicka M, Nowak K, Balazadeh S, Mueller-Roeber B, Gaj MD (2013) Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PloS One 8:e69261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hay A, Tsiantis M (2010) KNOX genes: versatile regulators of plant development and diversity. Development 137:3153–3165

    Article  PubMed  CAS  Google Scholar 

  • Hecht V, Vielle-calzada JP, Hartog MV et al (2001) The arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant physiol 127:803–816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ivarson E, Ahlman A, Li X, Zhu LH (2013) Development of an efficient regeneration and transformation method for the new potential oilseed crop Lepidium campestre. BMC Plant Biol 13:115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jourda C, Cardi C, Gibert O, Toro AG, Ricci J, Mbéguié-A-Mbéguié D, Yahiaoui N (2016) Lineage-specific evolutionary histories and regulation of major starch metabolism genes during banana ripening. Front Plant Sci 7:1778

    Article  PubMed  PubMed Central  Google Scholar 

  • Kakimoto T (1996) CKI1, a histidine kinase homolog implicated cytokinin signal transduction. Science 274:982–985

    Article  PubMed  CAS  Google Scholar 

  • Kaur N, Shivani, Pandey A, Tiwari S (2016) Provitamin A enrichment for tackling malnutrition. In: Mohandas S, Ravishankar K (eds) Banana: genomics and transgenic approaches for genetic improvement. Springer, Singapore, pp 277–299

    Chapter  Google Scholar 

  • Kaur N, Pandey A, Shivani, Kumar P, Pandey P, Kesarwani AK, Mantri SS, Awasthi P, Tiwari S (2017) Regulation of banana phytoene synthase (MaPSY) expression, characterization and their modulation under various abiotic stress conditions. Front Plant Sci 8:462

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur N, Alok A, Shivani, Kaur N, Pandey P, Awasthi P, Tiwari S (2018) CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct Integr Genomics 18:89–99

    Article  PubMed  CAS  Google Scholar 

  • Kumaravel M, Uma S, Backiyarani S, Saraswathi MS, Vaganan MM, Muthusamy M, Sajith KP (2017) Differential proteome analysis during early somatic embryogenesis in Musa spp. AAA cv. Grand Naine. Plant Cell Rep 36:163–178

    Article  PubMed  CAS  Google Scholar 

  • Li HQ, Sautter C, Potrykus I, Puonti-Kaerlas J (1996) Genetic transformation of cassava (Manihot esculenta Crantz). Nature Biotechnol 14:7340–7367

    Google Scholar 

  • Li X, Fang YH, Han JD, Bai SN, Rao GY (2015) Isolation and characterization of a novel somatic embryogenesis receptor kinase gene expressed in the fern Adiantum capillus-veneris during shoot regeneration in vitro. Plant Mol Biol Report 33:638–647

    Article  CAS  Google Scholar 

  • Ma J, He Y, Hu Z, Xu W, Xia J, Guo C, Lin S, Chen C, Wu C, Zhang J (2014) Characterization of the third SERK gene in pineapple (Ananas comosus) and analysis of its expression and autophosphorylation activity in vitro. Genet Mol Biol 37:530–539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mira MM, Adel ES, Stasolla C (2015) Ethylene is integrated into the nitric oxide regulation of arabidopsis somatic embryogenesis. J Genet Eng Biotechnol 13:7–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogas J, Kaufmann S, Henderson J, Somerville C (1999) Pickle is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in arabidopsis. Proc Natl Acad Sci USA 96:13839–13844

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Remakanthan A, Menon TG, Soniya EV (2014) Somatic embryogenesis in banana (Musa acuminata AAA cv. Grand Naine): effect of explant and culture conditions. In Vitro Cell Dev Biol Plant 50:127–136

    Article  CAS  Google Scholar 

  • Rider SD, Hemm MR, Hostetler HA, Li HC, Chapple C, Ogas J (2004) Metabolic profiling of the arabidopsis pkl mutant reveals selective derepression of embryonic traits. Planta 219:489–499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK, Millam S, Hedley PE, McNicol J, Bryan GJ (2008) Molecular regulation of somatic embryogenesis in potato: an auxin led perspective. Plant Mol Biol 68:185–201

    Article  PubMed  CAS  Google Scholar 

  • Shivani, Awasthi P, Sharma V, Kaur N, Kaur N, Pandey P, Tiwari S (2017) Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine. PLoS One 12:e0182242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singla B, Khurana JP, Khurana P (2008) Characterization of three somatic embryogenesis receptor kinas gene from wheat, Triticum aestivum. Plant Cell Rep 27:833–843

    Article  PubMed  CAS  Google Scholar 

  • Strosse H, Domergue R, Panis B, Escalant JV, Côte F (2003) Banana and plantain embryogenic cell suspensions. INIBAP technical guidelines 8. In: Vézina A, Picq C (eds) International network for the improvement of banana and plantain. Montpellier, France

  • Talapatra S, Ghoshal N, Raychaudhuri SS (2014) Molecular characterization, modeling and expression analysis of a somatic embryogenesis receptor kinase (SERK) gene in Momordica charantia L. during somatic embryogenesis. Plant Cell Tissue Organ Cult 116:271–283

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripathi JN, Oduor RO, Tripathi L (2015) A high-throughput regeneration and transformation platform for production of genetically modified banana. Front Plant Sci 6:1025. https://doi.org/10.3389/fpls.2015.01025

    Article  PubMed  PubMed Central  Google Scholar 

  • Tvorogova VE, Lebedeva MA, Lutova LA (2015) Expression of WOX and PIN genes during somatic and zygotic embryogenesis in Medicago truncatula. Russ J Genet 51:1189–1198

    Article  CAS  Google Scholar 

  • Wang B, Chen Y, Guo B, Kabir MR, Yao Y, Peng H, Xie C, Zhang Y, Sun Q, Ni Z (2014) Expression and functional analysis of genes encoding cytokinin receptor-like histidine kinase in maize (Zea mays L.). Mol Genet Genom 289:501–512

    Article  CAS  Google Scholar 

  • Weijers D, Sauer M, Meurette O, Friml J, Ljung K, Sandberg G, Hooykaas P, Offringa R (2005) Maintenance of embryonic auxin distribution for apical-basal patterning by PIN-FORMED—dependent auxin transport in arabidopsis. Plant Cell 17:2517–2526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woo YM, Park HJ, Suudi M, Yang JI, Park JJ, Back K, Park YM, An G (2007) Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol 65:125–136

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Zhu L, Shou H, Wu P (2005) A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol 46:1674–1681

    Article  PubMed  CAS  Google Scholar 

  • Youssef M, James A, Mayo-Mosqueda A, Ku-Cauich JR, Grijalva-Arango R, Escobedo-GM RM (2010) Influence of genotype and age of explant source on the capacity for somatic embryogenesis of two Cavendish banana cultivars (Musa acuminata Colla, AAA). Afr J Biotechnol 9:2216–2223

    CAS  Google Scholar 

  • Yu C, Dong W, Zhan Y, Huang ZA, Li Z, Kim IS, Zhang C (2017) Genome-wide identification and expression analysis of ClLAX, ClPIN and ClABCB genes families in Citrullus lanatus under various abiotic stresses and grafting. BMC Genet 18:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology (DBT) for grant and facility. Authors are thankful to Biotechnology Industry Research Assistance Council (BIRAC) for banana biofortification project grant to NABI. S is thankful to Department of Biotechnology, Panjab University Chandigarh for PhD registration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddharth Tiwari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by J. Van Huylenbroeck.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivani, Kaur, N., Awasthi, P. et al. Identification and expression analysis of genes involved in somatic embryogenesis of banana. Acta Physiol Plant 40, 139 (2018). https://doi.org/10.1007/s11738-018-2714-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2714-8

Keywords

Navigation