Skip to main content
Log in

Development changes in calla lily plants due to salt stress

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Soil salinity is mainly caused by excessive use of fertilizers and the use of poor quality water, and adversely affected crop growth especially when grown in protected environments. Soil salinity causes salt stress in plants, which inhibits plant growth, leading to morphological, metabolic and physiological changes. Though it is a major problem occurs more frequently, there is less information on the behavior of calla lily (Zantedeschia aethiopica) under these conditions, and most studies are conducted with other species of the genus Zantesdeschia. Therefore, this study aimed to evaluate ecophysiological, biochemical and anatomical growth responses of calla lily plants to salt stress. Rhizomes were grown in trays containing coconut fiber as a substrate and treated with 0, 25, 50, 75 and 100 mM NaCl to induce stress. A decrease in plant height was observed, as well as in the number of tillers and leaves, main root length, fresh and dry matter of the shoot and root system. A reduction in photosynthetic rate, stomatal conductance and transpiration rate was observed at 60 days. However, after 90 days, the photosynthetic rate was unchanged, with increased stomatal conductance and transpiration rate for plants exposed to 75 mM NaCl. Salt stress caused a higher accumulation of carbohydrates in shoots and roots. Thus, high concentrations of NaCl affect the development of calla lily, indicating that this species is susceptible to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almeida EFA, Paiva PDO, Frazão JEM, Santos FHS, Resende FA, Campos ML (2012) Produção de copo-de-leite em resposta à adubação com NPK e esterco bovino. Rev Bras Hort Ornam 18:129–134. doi:10.14295/rbho.v18i2.684

    Google Scholar 

  • Assis Júnior JO, Lacerda CF, Silva FB, Silva FLB, Bezerra MA, Gheyi HR (2007) Produtividade do feijão-de-corda e acúmulo de sais no solo em função da fração de lixiviação e da salinidade da água de irrigação. Eng Agríc 27:702–713. doi:10.1590/S0100-69162007000400013

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the determination of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochm 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Cai X, Niu G, Starman T, Hall C (2014) Response of six garden roses (Rosa x hybrida L.) to salt stress. Sci Hortic 168:27–32. doi:10.1016/j.scienta.2013.12.032

    Article  CAS  Google Scholar 

  • Castro EM, Pereira FJ, Paiva R (2009) Histologia vegetal: estrutura e função dos órgãos vegetativos. Editora UFLA, Lavras

    Google Scholar 

  • Cavalcanti FR, Oliveira JTA, Martins-Miranda AS, Viégas RA, Silveira JAG (2004) Superoxide dismutase, catalase and peroxidase activities do not confer protection against toxidative damage in salt-stressed cowpea leaves. New Phytol 163:563–571. doi:10.1111/j.1469-8137.2004.01139

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560. doi:10.1093/aob/mcp017

    Article  CAS  PubMed  Google Scholar 

  • Comissão de Fertilidade do Solo do Estado de Minas Gerais—CFSEMG (1999) Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 5a aproximação. Imprensa Universitária UFV, Viçosa

    Google Scholar 

  • Debez A, Rejeb KB, Ghars MA, Gandour M, Megdiche W, Hamed KB, Amor NB, Brown SC, Savouré A, Abdelly C (2013) Ecophysiological and genomic analysis of salt tolerance of Cakile maritima. Environ Exp Bot 92:64–72. doi:10.1016/j.envexpbot.2012

    Article  CAS  Google Scholar 

  • Dias NS, Blanco FF (2010) Efeito dos sais no solo e na planta. In: Gheyi HR, Dias NS, Lacerda CF (eds) Manejo da salinidade na agricultura: estudos básicos e aplicados. INCT-Sal, Fortaleza, pp 129–140

    Google Scholar 

  • Feijão AR, Silva JCB, Marques EC, Prisco JT, Gomes-Filho E (2011) Efeito da nutrição de nitrato na tolerância de plantas de sorgo à salinidade. Rev Ciênc Agron 42:675–683. doi:10.1590/S1806-66902011000300014

    Article  Google Scholar 

  • Fernández-García N, Olmos E, García-De La Garma J, López-Berenquer C, Rubio-Asensio JS (2014) Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). J Plant Physiol 171:64–75. doi:10.1016/j.jplph.2013.11.004

    Article  PubMed  Google Scholar 

  • Ferreira DF (2014) Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciênc Agrotec 38:109–112. doi:10.1590/S1413-70542014000200001

    Article  Google Scholar 

  • Fraire-Velázquez S, Balderas-Hernández VE (2013) Abiotic stress in plants and metabolic responses. In: Vahdati K, Leslie C (eds) Abiotic stress-plant responses and applications in agriculture. Intech, Rijeka, pp 25–48

    Google Scholar 

  • Furtini Neto AE, Boldrin KVF, Mattson NS (2015) Nutrition and quality in ornamental plants. Ornam Hort 21:139–150. doi:10.14295/aohl.v21i2.809

    Article  Google Scholar 

  • Galvan-ampudia CS, Testerink C (2011) Salt stress signals shape the plant root. Curr Opin Plant Biol 14:296–302. doi:10.1016/j.pbi.2011.03.019

    Article  CAS  PubMed  Google Scholar 

  • Grieve CM, Grattan SR, Maas EV (2012) Plant salt tolerance. In: Wallender WW, Tanji KK (eds) ASCE manual and reports on engineering practice no 71 agricultural salinity assessment and management. ASCE, Reston, pp 405–459

    Google Scholar 

  • Kraus JE, Arduin M (1997) Manual básico de métodos em morfologia vegetal. EDUR, Rio de Janeiro

    Google Scholar 

  • Lacerda CF, Cambraia J, Cano MAO, Ruiz HÁ (2001) Plant growth and solute accumulation and distribution in two sorghum genotypes, under NaCl stress. Rev Bras Fisiol Veg 13:270–284. doi:10.1590/S0103-31312001000300003

    Article  Google Scholar 

  • Maciel MP, Soares TM, Gheyi HR, Rezende EPL, Oliveira GXS (2012) Produção de girassol ornamental com uso de águas salobras em sistema hidropônico NFT. Rev Bras Eng Agric Ambient 16:165–172. doi:10.1590/1807-1929/agriambi.v18n12p1228-1234

    Article  Google Scholar 

  • Melo GM, Cunha PC, Pereira JAF, Willadino L, Ulisses C (2011) Alterações anatômicas em folhas e raízes de Jatropha curcas L. cultivadas sob estresse salino. Rev Ciênc Agron 42:670–674. doi:10.1590/S1806-66902011000300013

    Article  Google Scholar 

  • Miller GL (1959) Determination of reducing sugar by DNS method. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001.00808

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Navarro A, Elia A, Conversa G, Campi P, Mastrorilli M (2012) Potted mycorrhizal carnation plants and saline stress: growth, quality and nutritional plant responses. Sci Hortic 140:131–139. doi:10.1016/j.scienta.2012.03.016

    Article  CAS  Google Scholar 

  • Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K (2010) Fatality of salt stress to plants: morphological, physiological and biochemical aspects. Afr J Biotechnol 9:5475–5480. doi:10.5897/AJB10.100

    CAS  Google Scholar 

  • Paiva PDO, Almeida EFA (2012) Produção de flores de corte. Editora UFLA, Lavras

    Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349. doi:10.1016/j.ecoenv.2004.06.010

    Article  CAS  PubMed  Google Scholar 

  • Prisco T, Gomes Filho E (2010) Fisiologia e bioquímica do estresse salino em plantas. In: Gheyi HR, Dias NS, Lacerda CF (eds) Manejo da salinidade na agricultura: Estudos básicos e aplicados. INCT-Sal, Fortaleza, pp 147–163

    Google Scholar 

  • Rasool S, Hameed A, Azooz MM, Rehman M, Siddigi TO, Ahmad P (2013) Salt stress: causes, types and responses of plants. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 1–24

    Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. Soil Sci 78:154. doi:10.1097/00010694-195408000-00012

    Article  Google Scholar 

  • Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V (2014) The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ 37:1059–1073. doi:10.1111/pce.12199

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Munns R (2012) Salinity stress: physiological constraints and adaptative mechanisms. In: Shabala S (ed) Plant stress physiology. Cabi, New York, pp 59–93

    Chapter  Google Scholar 

  • Silva EC, Nogueira RJMC, Araújo FP, Melo NF, Azevedo Neto AD (2008) Physiological responses to salt stress in young umbu plants. Environ Exp Bot 63:147–157. doi:10.1016/j.envexpbot.2007.11.010

    Article  Google Scholar 

  • Tarchoune I, Degl’innocenti E, Kaddour R, Guidi L, Lachaâl M, Navari-Izzo F, Ouerghi Z (2012) Effects of NaCl or Na2SO4 salinity on plant growth, ion content and photosynthetic activity in Ocimum basilicum L. Acta Physiol Plant 34:607–615. doi:10.1007/s11738-011-0861-2

    Article  CAS  Google Scholar 

  • Travassos KD, Soares FAL, Gheyi HR, Dias NS, Nobre RG (2011) Crescimento e produção de flores de girassol irrigado com água salobra. Rev Bras Agric Irrigada 5:123–133. doi:10.7127/rbai.v5n200036

    Article  Google Scholar 

  • Veatch-Blohm ME, Morningstar L (2011) Calla lily growth and development under saline irrigation. HortScience 46:222–227

    CAS  Google Scholar 

  • Veatch-Blohm ME, Malinowski M, Keefer D (2012) Leaf water status, osmotic adjustment and carbon assimilation in colored calla lilies in response to saline irrigation. Sci Hortic 144:65–73. doi:10.1016/j.scienta.2012.06.036

    Article  CAS  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514. doi:10.1042/bj0570508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yiotis C, Psaras GK (2011) Dianthus caryophyllus stems and Zantedeschia aethiopica petioles/pedicels show anatomical features indicating efficient photosynthesis. Flora 206:360–364. doi:10.1016/j.flora.2010.07.004

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júnia Rafael Mendonça Figueiredo.

Additional information

Communicated by B Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, J.R.M., Paiva, P.D.d.O., dos Reis, M.V. et al. Development changes in calla lily plants due to salt stress. Acta Physiol Plant 39, 147 (2017). https://doi.org/10.1007/s11738-017-2446-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2446-1

Keywords

Navigation