Skip to main content
Log in

Lignification, phenols accumulation, induction of PR proteins and antioxidant-related enzymes are key factors in the resistance of Olea europaea to Verticillium wilt of olive

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

To determine whether differences in olive susceptibility to Verticillium dahliae are accompanied by differential biochemical and physiological defense responses, we monitored the changes in fungal DNA concentration, membrane conductivity, total polyphenols, orthodihydroxyphenols, lignin and defense-related enzymes in the stems and roots of two olive cultivars differing by their susceptibility to V. dahliae. Fungal DNA was detected in the roots at 4 dai and attains a pick of 3.614 and 2.475 ng/100 ng of total DNA, respectively, in the susceptible and resistant cultivars. V. dahliae DNA in the stems was detected from 15 dai and raised slowly to attain a pick of 0.231 ng/100 ng of total DNA in the susceptible cultivar. Correlation tests between the biochemical and physiological parameters revealed that high membrane conductivity, together with early activation of peroxidase (POX) and polyphenol oxidase (PPO), resulted in a reduced root rot and wilt symptoms in the resistant cultivar Sayali when compared to the susceptible cultivar Chemlali. Monitoring of chitinase and β-1,3-glucanase genes’ expression levels indicates that early and simultaneous upregulation of both genes is correlated with reduced susceptibility in the resistant cultivar Sayali. Correlation tests performed between the different studied parameters, revealed a clear association between, POX activity and lignin content (r = 0.873), polyphenols and lignin contents (r = 0.886), PPO activity and OD phenols content (0.795), chitinase and β-1,3-glucanase activities (0.878) in the resistant cultivar Sayali. By contrast, lower correlation coefficients were obtained for the susceptible cultivar Chemlali. Overall, this study provides new insights into the improvement of olive genetic resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alkher H, El Hadrami A, Rashid KY et al (2009) Pathogenic variation of Verticillium dahliae after serial passages through potato and sunflower. Can J Plant Pathol 31:427–438

    Article  Google Scholar 

  • Arias-Calderón R, Rodríguez-Jurado D, Bejarano-Alcázar J et al (2015) Evaluation of Verticillium wilt resistance in selections from olive breeding crosses. Euphytica 206(3):619–629

    Article  Google Scholar 

  • Atallah ZK, Bae J, Jansky SH, Rouse DI, Stevenson WR (2007) Multiplex real-time quantitative PCR to detect and quantify Verticillium dahliae colonization in potato lines that differ in response to Verticillium wilt. Phytopathology 97:865–872

    Article  CAS  PubMed  Google Scholar 

  • Baidez AG, Gomez P, Del Rio JA et al (2007) Dysfunctionality of the Xylem in Olea europaea L. plants associated with the infection process by Verticillium dahliae Kleb. Role of phenolic compounds in plant defense mechanism. J Agric Food Chem 55(9):3373–3377

    Article  CAS  PubMed  Google Scholar 

  • Chaari Rkhis A, Gharbi Y, Cheffi M et al (2016) Exploitation des techniques de cultures in vitro pour la sélection contre V. dahliae chez l’olivier. New Science 27:1394–1401

    Google Scholar 

  • Cheng C, Gao X, Feng B et al (2013) Plant immune response to pathogens differs with changing temperatures. Nat Commun 4:2530

    PubMed  PubMed Central  Google Scholar 

  • Daayf F, El Hadrami A, El-Bebany A et al (2012) Phenolic Compounds in plant defense and pathogen counter-defense mechanisms. In Cheynier, V, Sarni-Manchado P, Quideau S (eds) Recent advances in polyphenol research, 3. Wiley-Blackwell, Oxford. doi:10.1002/9781118299753.ch8

  • Funnell DL, Lawrence CB, Pedersen GF et al (2004) Expression of the tobacco β-1,3-glucanase, PR-2d, following induction of SAR with Peronospora tabacina. Physiol Mol Plant Pathol 65:285–296

    Article  CAS  Google Scholar 

  • Gharbi Y, Alkher H, Triki MA et al (2015a) Comparative expression of genes controlling cell wall-degrading enzymes in Verticillium dahliae isolates from olive, potato and sunflower. Physiol Mol Plant Pathol 91:56–65

    Article  CAS  Google Scholar 

  • Gharbi Y, Triki MA, Trabelsi R et al (2015b) Genetic structure of Verticillium dahliae isolates infecting olive tree in Tunisia using AFLP, pathogenicity and PCR markers. Plant Pathol 64:871–879

    Article  Google Scholar 

  • Gharbi Y, Barkallah M, Bouazizi E et al (2016) Differential fungal colonization and physiological defense responses of new olive cultivars infected by the necrotrophic fungus Verticillium dahliae. Acta Physiol Plant 38:242

  • Gómez-Lama Cabanas C, Schiliro E, Valverde-Corredor A et al (2015) Systemic responses in a tolerant olive (Olea europaea L.) cultivar upon root colonization by the vascular pathogen Verticillium dahliae. Front Microbiol 6:928

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanselle T, Barz W (2001) Purification and characterization of the extracellular PR-2b β-1,3-glucanase accumulating in different Ascochyta rabiei-infected chickpea (Cicer arietinum L.) cultivars. Plant Sci 161(4):773–781

    Article  CAS  Google Scholar 

  • Jiménez-Fernandez D, Trapero-Casas JL, Landa BB et al (2016) Characterization of resistance against the olive-defoliating Verticillium dahliae pathotype in selected clones of wild olive. Plant Pathol 65(8):1279–1291

    Article  Google Scholar 

  • Khan AJ, Deadman ML, Srikandakumar A et al (2001) Biochemical changes in sorghum leaves infected with leaf spot pathogen, Drechslera sorghicola. Plant Pathol J 17(6):342–346

    Google Scholar 

  • Konig S, Feussner K, Kaever A et al (2014) Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum. New Phytol 202(3):823–837

    Article  PubMed  Google Scholar 

  • Kumar A, Pundhir VS, Gupka KC (1991) The role of phenols in potato tuber resistance against soft rot by Erwinia carotovora ssp. carotovora. Potato Res 34:9–16

    Article  CAS  Google Scholar 

  • Lewis CE, Walker JRL, Lancester JE et al (1998) Determination of anthocyanins, flavonoids and phenolic acids in potatoes. I: coloured cultivars of Solunum tuberosum L. J Sci Food Agric 77:45–57

    Article  CAS  Google Scholar 

  • Lopèz-Escudero FJ, del Rio C, Caballero JM et al (2004) Evaluation of olive cultivars for resistance to Verticillium dahliae. Eur J Plant Pathol 110:79–85

    Article  Google Scholar 

  • Markakis EA, Tjamos SE, Antoniou PP et al (2010) Phenolic responses of resistant and susceptible olive cultivars induced by defoliating and non-defoliating Verticillium dahliae pathotypes. Plant Dis 94:1156–1162

    Article  CAS  Google Scholar 

  • Mercado-Blanco J, Collado-Romero M, Parrilla-Araujo S, Rodríguez-Jurado D, Jiménez-Díaz RM (2003) Quantitative monitoring of colonization of olive genotypes by Verticillium dahliae pathotypes with real-time polymerase chain reaction. Physiol Mol Plant Pathol 63:91–105

    Article  CAS  Google Scholar 

  • Mohanraj D, Padmanaban P, Karunakaran M (2003) Pathogen toxin-induced electrolyte leakage and phytoalexin accumulation as indices of red-rot (Colletotrichum falcatum Went) resistance in sugarcane. Phytopathol Mediterr 42:129–134

    CAS  Google Scholar 

  • Moreira-Vilar FC, De Siqueira-Soares R, Finger-Teixeira A et al (2014) The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than klason and thioglycolic acid methods. PLoS One 9(10):e110000. doi:10.1371/journal.pone.0110000

    Article  PubMed  PubMed Central  Google Scholar 

  • Morello P, Diez CM, Codes M et al (2015) Sanitation of olive plants infected by Verticillium dahliae using heat treatments. Plant Pathol 65(3):412–421

    Article  Google Scholar 

  • National Olive Office (2015) Positionnement de la Tunisie sur le Marché Mondial d’Huile d’Olive. http://www.onh.com.tn/index.php/fr/positionnement-de-la-tunisie-sur-le-marche-mondial-d-huile-d-olive. Accessed 20 Nov 2015

  • Ngadze E, Icishahayo D, Coutinho TA et al (2012) Role of polyphenol oxidase, peroxidase, phenylalanine ammonia lyase, chlorogenic acid, and total soluble phenols in resistance of potatoes to soft rot. Plant Dis 96(2):186–192

    Article  CAS  Google Scholar 

  • Palloix A, Ayme V, Moury B (2009) Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol 183:190–199

    Article  CAS  PubMed  Google Scholar 

  • Pottosin I, Velarde-Buendía AM, Bose J et al (2014) Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. J Exp Bot 65(5):1271–1283

    Article  CAS  PubMed  Google Scholar 

  • Pusztahelyi T, Holb IJ, Pocsi I (2015) Secondary metabolites in fungus-plant interactions. Front Plant Sci 6:573

    Article  PubMed  PubMed Central  Google Scholar 

  • Roca LF, Moral J, Trapero C et al (2016) Effect of inoculum density on Verticillium wilt incidence in commercial olive orchards. J Phytopathol 164:61–64

    Article  Google Scholar 

  • Shi H, Liu Z, Zhu L et al (2012) Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae. Acta Bioch Bioph Sin 44(7):555–564

    Article  CAS  Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C et al (2004) Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree. Plant Sci 166:293–302

    Article  CAS  Google Scholar 

  • St Clair DA (2010) quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol 48:247–268

    Article  CAS  PubMed  Google Scholar 

  • Trapero C, Rallo L, López-Escudero FJ et al (2015) Variability and selection of verticillium wilt resistant genotypes in cultivated olive and in the Olea genus. Plant Pathol 64:890–900

    Article  Google Scholar 

  • Vandana VV, Suseela Bhai R, Shamina A (2014) Biochemical defense responses of black pepper (Piper nigrum L.) lines to Phytophthora capsici. Physiol Mol Plant Pathol 88:18–27

    Article  Google Scholar 

  • Velazhahan R, Muthukrishnan S (2004) Transgenic tobacco plants constitutively overexpressing a rice thaumatin-like protein (PR-5) show enhanced resistance to Alternaria alternate. Biol Plant 47:347–354

    Article  Google Scholar 

  • Wan J, Zhang XC, Stacey G (2008) Chitin signaling and plant disease resistance. Plant Signal Behav 3(10):831–833

    Article  PubMed  PubMed Central  Google Scholar 

  • War AR, Paulraj MG, War MY et al (2012) Herbivore-induced resistance in different groundnut germplasm lines to Asian armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Acta Physiol Plant 34(1):343–352

    Article  CAS  Google Scholar 

  • Xu B, Escamilla-Trevino LL, Sathitsuksanoh N et al (2011a) Silencing of 4-coumarate: coenzyme A ligase in switch grass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytol 192:611–625

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Zhu L, Tu L et al (2011b) Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot 62(15):5607–5621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a grant from the PESTOLIVE project in Tunisia to M.A. Triki, and Research Laboratory APREGO, and the research unit of toxicology–environmental microbiology and health to R. Gdoura.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaakoub Gharbi.

Ethics declarations

Conflict of interest

We have read and understood the journal policy on declaration of interests and we have no conflict of interest to declare.

Additional information

Communicated by L Bavaresco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharbi, Y., Barkallah, M., Bouazizi, E. et al. Lignification, phenols accumulation, induction of PR proteins and antioxidant-related enzymes are key factors in the resistance of Olea europaea to Verticillium wilt of olive. Acta Physiol Plant 39, 43 (2017). https://doi.org/10.1007/s11738-016-2343-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2343-z

Keywords

Navigation