Skip to main content

Advertisement

Log in

Photosynthetic and physiological responses of mangroves under an environmental deterioration

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Mangroves are important marine coastal ecosystems in the Pearl River Estuary in China. However, they are degraded by heavy metal pollution. Although heavy metal levels in the Pearl River Estuary have been investigated, physiological and photosynthetic responses related to mangrove health remain unclear. In this study, three typical mangrove species, namely Kandelia candel L., Aegiceras corniculatum L. and Sonneratia apetala L., were selected from six normal sites of mangrove reserves and from six deteriorated sites along the river way to investigate the variation in physiological and photosynthetic responses. The photosynthetic and transpiration rates and the enzyme activities associated with mangrove metabolic activity were significantly lower in the deteriorated sites than in the normal sites. The K+/Na+ ratio of mangroves in the normal sites was higher than that in the deteriorated sites. H2O2 contents were also higher in the deteriorated sites than in the normal sites. Cluster analysis indicated that species determined the responses of mangroves to the deteriorated environment. Principal component analysis revealed that hexose phosphate isomerase and H2O2 were representative parameters that could be used for rapid health assessment. The transpiration rate and glyceraldehyde-3-phosphate dehydrogenase were biomarkers that could be considered to distinguish mangroves with different responses to deteriorated environments. This study helps ensure the sustainable development of marine coastal ecosystems in the Pearl River Estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allison SD, Vitousek PM (2004) Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oceologia 141:612–619

    Article  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI, Rosenberg LL, Whatley FR (1954) A new glyceraldehyde phosphate dehydrogenase from photosynthetic tissues. Nature 173:1132–1134

    Article  CAS  Google Scholar 

  • Bai JM, Liu XP (2014) Heavy metal pollution in surface soils of Pearl River Delta, China. Environ Monit Assess 186:8051–8061

    Google Scholar 

  • Ball MC (1986) Photosynthesis in mangrove. Wetlands 6:12–22

    Google Scholar 

  • Bandaranayake WM (2002) Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetl Ecol Manag 10:421–452

    Article  CAS  Google Scholar 

  • Basak UC, Das AB, Das P (1996) Chlorophylls, carotenoids, proteins and secondary metabolites in leaves of 14 species of mangrove. Bull Mar Sci 58:654–659

    Google Scholar 

  • Bergmeyer HU, Gawwehn K, Grassl M (1974) Enzymes as biochemical reagents. In: Bergmeyer HU (ed) Methods of Enzymatic Analysis. Academic Press, New York, pp 425–556

    Google Scholar 

  • Beutler E (1975) Red cell metabolism: a manual of biochemical methods, 2nd edn. Grune & Stratotn, NewYork

    Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  • Bowler C, Vanmontagu M, Inze D (1992) Superoxide-dismutase and stress tolerance. Annu Rev Plant Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chen LZ, Wang WQ, Zhang YH, Lin GH (2009) Recent progresses in mangrove conservation, restoration and research in China. J Plant Ecol 2:45–54

    Article  Google Scholar 

  • Chu HY, Chen NC, Yeung MC, Tam NFY, Wong YS (1998) Tide-tank system simulating mangrove wetland for removal of nutrients and heavy metals from wastewater. Water Sci Technol 38:361–368

    Article  CAS  Google Scholar 

  • Dannel F, Pfeffer H, Marschner H (1995) Isolation of apoplasmic fluid from sunflower leaves and its use for studies on influence of nitrogen supply on apoplasmic pH. J Plant Physiol 146:273–278

    Article  CAS  Google Scholar 

  • Deng WK, Wang YB, Liu ZX, Cheng H, Xue Y (2014) HemI: A Toolkit for Illustrating Heatmaps. PLoS ONE 9:e111988

    Article  PubMed  PubMed Central  Google Scholar 

  • Devi SR, Prasad MNV (1998) Copper toxicity in Ceratophyllum demersum L. (coontail), a free-floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Sci 138:157–165

    Article  CAS  Google Scholar 

  • Fan HQ, Lin P (1995) Potential role of leaching in weight loss during the decomposition of mangrove Kandelia candel leaf litter. Oceanol Limnol Sin 26:28–33 (in Chinese)

    Google Scholar 

  • Fang Z (2006) Heavy metals in mussels and associated sediments from the coastal sites along the Pearl River Delta, South China. Environ Toxicol Chem 88:45–55

    Article  CAS  Google Scholar 

  • Gay CA, Gebicki JA (2003) Measurement of protein and lipid hydroperoxides in biological systems by the ferric-xylenol orange method. Anal Biochem 315:29–35

    Article  CAS  PubMed  Google Scholar 

  • Härdle W, Simar L (2007) Applied multivariate statistical analysis, 2ed edn. Springer-Verlag, Berlin

    Google Scholar 

  • Helmy A, Antoniades CA, Guilfoyle MR, Carpenter KLH, Hutchinson PJ (2012) Principal component analysis of the cytokine and chemokine response to human traumatic brain injury. PLoS ONE 7:e39677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henzler T, Steudle E (2000) Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J Exp Bot 51:2053–2066

    Article  CAS  PubMed  Google Scholar 

  • Hong HS, Chen WQ, Xu L, Wang XH, Zhang LP (1999) Distribution and fate of organochlorine pollutants in the Pearl River estuary. Mar Pollut Bull 39:376–382

    Article  CAS  Google Scholar 

  • Hu X, Jiang M, Zhang J, Zhang A, Lin F, Tan M (2007) Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol 173:27–38

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Li P, Zhang Z (1982) Formation. The Guangzhou Branch of Popular Science Press, Guangzhou (in Chinese), Development and Evolution of the Pearl River Delta

    Google Scholar 

  • Jiang M, Zhang J (2003) Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defense in leaves of maize seedlings. Plant, Cell Environ 26:929–939

    Article  CAS  Google Scholar 

  • Kastori R, Plesnicar M, Sakac Z, Pankovic D, Arsenijevic-Maksimovic I (1998) Effect of excess lead on sunflower growth and photosynthesis. J Plant Nutr 21:75–85

    Article  CAS  Google Scholar 

  • Kim JW, Dang CV (2005) Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30:142–150

    Article  CAS  PubMed  Google Scholar 

  • Krupa Z, Baranowska M, Orzot D (1996) Can anthocyanins be considered as heavy metal stress indicator in higher plants? Acta Physiol Plant 18:147–151

    CAS  Google Scholar 

  • Leshem Y, Seri L, Levine A (2006) Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J 51:185–197

    Article  Google Scholar 

  • Li F, Yang Q, Zan Q, Tam NFY, Shin PKS, Vrijmoed LLP, Cheung SG (2011) Differences in leaf construction cost between alien and native mangrove species in Futian, Shenzhen, China: implications for invasiveness of alien species. Mar Pollut Bull 62:1957–1962

    Article  CAS  PubMed  Google Scholar 

  • Li LH, Yi HL (2012) Effect of sulfur dioxide on ROS production, gene expression and antioxidant enzyme activity in Arabidopsis plants. Plant Physiol Bioch 58:46–53

    Article  CAS  Google Scholar 

  • Li QS, Wu ZF, Chu B, Zhang N, Cai SS, Fang JH (2007) Heavy metals in coastal wetland sediments of the Pearl River Estuary, China. Environ Pollut 149:158–164

    Article  CAS  PubMed  Google Scholar 

  • Liao BW, Zheng SF, Chen YJ (2004) Biological characteristics of ecological adaptability for nonindigenous mangroves species Sonneratia apetala. Chin J Ecol 23:10–15

    Google Scholar 

  • Lin P (1984) Mangrove Vegetation. Ocean Press, Beijing (in Chinese)

    Google Scholar 

  • Lin P (1997) Mangrove Ecosystem in China. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Lin P, Lu CY, Wang GL (1990) Biomass and productivity of Bruguiera sexangula mangrove forests in Hainan Island, China. Journal of Xiamen University 29:209–213 (in Chinese with English abstract)

    Google Scholar 

  • Liu FX, Xu WY, Wei Q, Zhang ZH, Xing Z, Tan LB, Di C, Yao DX, Wang CC, Tan YJ, Yan H, Ling Y, Sun CQ, Xue YB, Su Z (2010) Gene expression profiles deciphering rice phenotypic variation between Nipponbare (Japonica) and 93-11 (Indica) during oxidative stress. PLoS ONE 5:e8632

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu LN, Li FL, Yang Q, Tam NFY, Liao WB, Zan QJ (2014) Long-term differences in annual litter production between alien (Sonneratia apetala) and native (Kandelia obovata) mangrove species in Futian, Shenzhen, China. Mar Pollut Bull 85:747–753

    Article  CAS  PubMed  Google Scholar 

  • Luna CM, Gonzalez CA, Trippi VS (1994) Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol 35:11–15

    CAS  Google Scholar 

  • Lv SL, Nie LL, Fan PX, Wang XC, Jiang D, Chen XY, Li YX (2012) Sodium plays a more important role than potassium and chloride in growth of Salicornia europaea. Acta Physiol Plant 34:503–513

    Article  CAS  Google Scholar 

  • Maathuis FM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ Ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • MacFarlane GR, Koller CE, Blomberg SP (2007) Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies. Chemosphere 69:1454–1464

    Article  CAS  PubMed  Google Scholar 

  • Mehta RA, Fawcett TW, Porath D, Matto AR (1992) Oxidative stress causes lipid membrane translocation and in vivo degradation of ribulase 1,5 bisphosphate carboxylase/oxygenase. J Biol Chem 267:2810–2816

    CAS  PubMed  Google Scholar 

  • Moorthy P, Kathiresan K (1999) Effects of UV-B radiation on photosynthetic reactions in Rhizophora apiculata. Plant Growth Regul 28:49–54

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Musrati RA, Kollarova M, Mernik N, Mikulasova D (1998) Malate dehydrogenase: Distribution, function and properties. Gen Physiol Biophys 17:193–210

    CAS  PubMed  Google Scholar 

  • Pan K, Wang WX (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 421:3–16

    Article  PubMed  Google Scholar 

  • Patra JK, Thatoi HN (2011) Metabolic diversity and bioactivity screening of mangrove plants: a review. Acta Physiol Plant 33:1051–1061

    Article  CAS  Google Scholar 

  • Peters EC, Gassman NJ, Firman JC, Richmond RH, Power EA (1997) Ecotoxicology of tropical marine ecosystems. Environ Toxicol Chem 16:12–40

    Article  CAS  Google Scholar 

  • Schickler H, Caspi H (1999) Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum. Physiol Plant 105:39–44

    Article  CAS  Google Scholar 

  • Tam NFY (2006) Pollution studies on mangroves in Hong Kong and mainland China. Environment in Asia Pacific Harbours, pp 147-163

  • Tam NFY, Wong YS (1997) Accumulation and distribution of heavy metals in a simulated mangrove system treated with sewage. Hydrobiologia 352:67–75

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS (2000) Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ Pollut 110:195–205

    Article  CAS  PubMed  Google Scholar 

  • Tang YJ, Fang ZQ, Yu SX (2008) Heavy metals, polycyclic aromatic hydrocarbons and organochlorine pesticides in the surface sediments of mangrove swamps from coastal sites along the Leizhou Peninsula, South China. Acta Oceanologica Sinica 27:42–53

    CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theuri MM, Kinyamario JI, Van Speybroeck D (1999) Photosynthesis and related physiological processes in two mangrove species, Rhizophora mucronata and Ceriops tagal, at Gazi Bay, Kenya. Afr J Ecol 37:180–193

    Article  Google Scholar 

  • Tomlinson PB (1986) The Botany of Mangroves. Cambridge University Press, London

    Google Scholar 

  • Vane CH, Harrison I, Kim AW, Moss-Hayes V, Vickers BP, Hong K (2009) Organic and metal contamination in surface mangrove sediments of South China. Mar Pollut Bull 58:134–144

    Article  CAS  PubMed  Google Scholar 

  • Vangronsveld J, Clijsters H (1994) Toxic effects of metals. In: Farago ME (ed) Plants and The Chemical Elements-Biochemistry, Uptake, Tolerance and Toxicity. VCH, Weinheim, pp 149–177

    Google Scholar 

  • Wang WQ, Xiao Y, Chen LZ, Lin P (2007) Leaf anatomical responses to periodical waterlogging in simulated semidiurnal tides in mangrove Bruguiera gymnorrhiza seedlings. Aquat Bot 86:223–228

    Article  Google Scholar 

  • Wang WQ, Wang M (2007) The Mangroves of China. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Wei S, Lau RKF, Fung CN, Zheng GJ, Lam JCW, Connell DW, Fang Z, Richardson BJ, Lam PKS (2006) Trace organic contamination in biota collected from the Pearl River Estuary, China: A preliminary risk assessment. Mar Pollut Bull 52:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Wong YS, Tam NFY, Lan CY (1997) Mangrove wetlands as wastewater treatment facility: a field trial. Hydrobiologia 352:49–59

    Article  CAS  Google Scholar 

  • Wozny A, Krzeslowska M (1993) Plant-cell responses to lead. Acta Soc Bot Pol 62:101–105

    Article  CAS  Google Scholar 

  • Wu J, Xiao Q, Xu J, Li MY, Pan JY, Yang MH (2008) Natural products from true mangrove flora: source, chemistry and bioactivities. Nat Prod Rep 25:955–981

    Article  CAS  PubMed  Google Scholar 

  • Xiong LM, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell Environ 25:131–139

    Article  CAS  Google Scholar 

  • Yang Q, Tam NFY, Wong YS, Luan TG, Su WS, Lan CY, Shin PKS, Cheung SG (2008) Potential use of mangroves as constructed wetland for municipal, sewage treatment in Futian, Shenzhen, China. Mar Pollut Bull 57:735–743

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Tam NFY, Wong YS, Lu CY (2003) Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging. Environ Exp Bot 49:209–221

    Article  Google Scholar 

  • Ye Y, Tam NFY, Wong YS, Lu CY (2004) Does sea level rise influence propagule establishment, early growth and physiology of Kandelia candel and Bruguiera gymnorrhiza? J Exp Mar Biol Ecol 306:197–215

    Article  Google Scholar 

  • Yin Y, Lin P (1992) Study on the litter fall of Rhizophora stylosa community in Yinluo Bay, Guangxi. Guihaia 12:59–63 (in Chinese with English abstract)

    Google Scholar 

  • Zan QJ, Wang BS, Wang YJ, Li MG (2003) Ecological assessment on the introduced Sonneratia caseolaris and S-apetala at the Mangrove Forest of Shenzhen Bay, China. Acta Botanica Sinica 45:544–551

    Google Scholar 

  • Zhang F, Wang Y, Yang YL, Wu H, Wang D, Liu JQ (2007) Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant, Cell Environ 30:775–785

    Article  Google Scholar 

  • Zhang HY, Jiang YN, He ZY, Ma M (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162:977–984

    Article  CAS  PubMed  Google Scholar 

  • Zhang JE, Liu JL, Ouyang Y, Liao BW, Zhao BL (2010) Removal of nutrients and heavy metals from wastewater with mangrove Sonneratia apetala Buch-Ham. Ecol Eng 36:807–812

    Article  Google Scholar 

  • Zheng GJ, Lam MHW, Lam PKS, Richardson BJ, Man BKW, Li AMY (2000) Concentrations of persistent organic pollutants in surface sediments of the mudflat and mangroves at Mai Po marshes nature reserve, Hong Kong. Mar Pollut Bull 40:1210–1214

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ocean Public Funded Project from State Oceanic Administration (Grant No. 201305021). We thank Dr. Zhu Xiaoshan and Dr. Feng Jianxiang from Division of Ocean Science and Technology, Tsinghua University for their support during sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinxin Li.

Additional information

Communicated by U. Feller.

J. Guo and X. Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Chen, X., Bao, H. et al. Photosynthetic and physiological responses of mangroves under an environmental deterioration. Acta Physiol Plant 38, 140 (2016). https://doi.org/10.1007/s11738-016-2157-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2157-z

Keywords

Navigation