Skip to main content
Log in

Transcriptome analysis of the genes related to the morphological changes of Paulownia tomentosa plantlets infected with phytoplasma

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Paulownia witches’ broom (PaWB) caused by phytoplasma is a destructive disease of Paulownia in China and has been studied over the past 40 years. Recently, our research team found that methyl methanesulfonate (MMS) could help Paulownia plants recover from the symptoms of Paulownia witches’ broom in which the expression levels of genes related to photosynthesis, carbohydrate and nitrogen metabolism, plant-pathogen interaction, circadian rhythm changed. However, the molecular mechanisms underlying the interaction between PaWB and phytoplasma are still not fully understood. Here, high-throughput mRNA sequencing and de novo assembly were conducted in order to investigate gene expression profiles in three Paulownia tomentosa samples (healthy plantlets, diseased plantlets, and diseased plantlets treated with MMS. A total of 85,545 all-unigene were obtained, 2540 of which were significantly differentially expressed among the three samples. Some genes associated with folate and fatty acid synthesis, signal transduction pathways of plant hormones were identified, and their expression patterns were further validated using quantitative real-time PCR. To our knowledge, this is the first transcriptome-based study to demonstrate variations of gene expression related to morphological changes in metabolic pathways of phytoplasma-infected P. tomentosa plants. The information provided in this study will help understand the molecular pathogenesis of the Paulownia plant in response to phytoplasma infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anukul N, Ramos R, Mehrshahi P, Castelazo A, Parker H et al (2010) Folate polyglutamylation is required for rice seed development. Rice 3:181–193

    Article  Google Scholar 

  • Audic S, Claverie J (1997) The significance of digital gene expression profiles. Genome Res 7(10):986–995

    CAS  PubMed  Google Scholar 

  • Balaghi M, Wagner C (1993) DNA methylation in folate deficiency: use of CpG methylase. Biochem Bioph Res Co 193:1184–1190

    Article  CAS  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Basset GJC, Quinlivan EP, Gregory JF III, Hanson AD (2005) Folate synthesis and metabolism in plants and prospects for biofortification. Crop Sci 45:449–453

    Article  CAS  Google Scholar 

  • Bayliss KL, Saqib M, Dell B, Jones MG, Hardy GE St (2005) First record of ‘Candidatus Phytoplasma australiense’ in Paulownia trees. Australas Plant Path 34:123–124

    Article  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Bertaccini A, Duduk B (2010) Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathol Mediterr 48:355–378

    Google Scholar 

  • Bilwes AM, Alex LA, Crane BR, Simon MI (1999) Structure of CheA, a signal-transducing histidine kinase. Cell 96:131–141

    Article  CAS  PubMed  Google Scholar 

  • Cao XB, Fan GQ, Deng MJ, Zhao ZL, Dong YP (2014a) Identification of genes related to Paulownia witches’ broom by AFLP and MSAP. Int J Mol Sci 15:14669–14683

    Article  PubMed Central  PubMed  Google Scholar 

  • Cao XB, Fan GQ, Zhao ZL, Deng MJ, Dong YP (2014b) Morphological changes of paulownia seedlings infected phytoplasmas reveal the genes associated with witches’ broom through AFLP and MSAP. Plos One 9:e1125331

    Google Scholar 

  • Ćurković Perica M (2008) Auxin-treatment induces recovery of phytoplasma-infected periwinkle. J Appl Microbiol 105:1826–1834

    Article  PubMed  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Doi Y, Ternaka M, Yora K, Asuyama H (1967) Mycoplasma or PLT-group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows and Paulownia witches’ broom. Ann Phytopathol Soc Jpn 33:259–266

    Article  Google Scholar 

  • Ehya F, Monavarfeshani A, Fard EM, Farsad LK, Nekouei MK, Mardi M, Salekdeh GH (2013) Phytoplasma-responsive microRNAs modulate hormonal, nutritional, and stress signalling pathways in Mexican lime trees. Plos One 8:e66372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Erbar C, Gülden C (2011) Ontogeny of the flowers in Paulownia tomentosa—a contribution to the recognition of the resurrected monogeneric family Paulowniaceae Flora—morphology, distribution. Funct Ecol Plants 206:205–218

    Article  Google Scholar 

  • Fan GQ, Zhang S, Zhai XQ, Liu F, Dong ZQ (2007) Effects of antibiotics on the paulownia witches’ broom phytoplasmas and pathogenic protein related to witches’ broom symptom. Sci Silv Sin 43:138–142

    CAS  Google Scholar 

  • Fan GQ, Dong YP, Deng MJ, Zhao ZL, Niu SY, Xu EK (2014) Plant-pathogen interaction, circadian rhythm, and hormone-related gene expression provide indicators of phytoplasma infection in Paulownia fortunei. Int J Mol Sci 15:23141–23162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferreira FJ, Kieber JJ (2005) Cytokinin signaling. Curr Opin Plant Biol 8:518–525

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grabherr MJ, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hegele M, Bangerth F (1998) Changes in IAA and ABA levels and IAA transport of proliferation-diseased apple trees. Acta Hortic 463:97–108

    Article  Google Scholar 

  • Hogenhout SA, Oshima K, Ammar ED, Kakizawa S, Kingdom HN, Namba S (2008) Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9:403–423

    Article  CAS  PubMed  Google Scholar 

  • Hoshi A, Ishii Y, Kakizawa S, Oshima K, Namba S (2007) Host-parasite interaction of phytoplasmas from a molecular biological perspective. B Insectol 60:105

    Google Scholar 

  • Hoshi A, Oshima K, Kakizawa S et al (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci USA 106:6416–6421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hren M, Nikolić P, Rotter A et al (2009) ‘Bois noir’ phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genom 10:460

    Article  Google Scholar 

  • Inoue T, Higuchi M, Hashimoto Y et al (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063

    Article  CAS  PubMed  Google Scholar 

  • Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intel Syst Mol Biol 99:138–148

    Google Scholar 

  • Ishida K, Yamashino T, Yokoyama A, Mizuno T (2008) Three type-B response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of Arabidopsis thaliana. Plant Cell Physiol 49:47–57

    Article  CAS  PubMed  Google Scholar 

  • Kim TW, Guan S, Burlingame Alma L, Wang ZY (2011) The CDG1 Kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Mol Cell 43:561–571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Murata M, Minami H et al (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44:939–949

    Article  CAS  PubMed  Google Scholar 

  • Lee IM, Hammond RW, Davis RE, Gundersen DE (1993) Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology 83:834–842

    Article  CAS  Google Scholar 

  • Leljak-Levanic D, Jezic M, Cesar V et al (2010) Biochemical and epigenetic changes in phytoplasma -recovered periwinkle after indole-3-butyric acid treatment. J Appl Microbiol 109:2069–2078

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Zhou T, Li H, Fan Z, Li Y, Piao C, Tian G (2009) Molecular characterisation of two plasmids from paulownia witches’ broom phytoplasma and detection of a plasmid-encoded protein in infected plants. Eur J Plant Pathol 123:321–330

    Article  CAS  Google Scholar 

  • Liu RN, Dong YP, Fan GQ, Zhao ZL, Deng MJ, Cao XB, Niu SY (2013) Discovery of genes related to witches broom disease in Paulownia tomentosa × Paulownia fortunei by a de novo assembled transcriptome. Plos One 8:e80238

    Article  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maejima K, Oshima K, Namba S (2014) Exploring the phytoplasmas, plant pathogenic bacteria. J Gen Plant Pathol 80:210–221

    Article  CAS  Google Scholar 

  • McKersie BD, Crowe JH, Crowe LM (1989) Free fatty acid effects on leakage, phase properties and fusion of fully hydrated model membranes. BBA Biomembranes 982:156–160

    Article  CAS  Google Scholar 

  • Moreau S, Fromentin J, Vailleau F et al (2014) The symbiotic transcription factor MtEFD and cytokinins are positively acting in the Medicago truncatula and Ralstonia solanacearum pathogenic interaction. New Phytol 201:1343–1357

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Mou HQ, Lu J, Zhu SF, Lin CL, Tian GZ, Xu X, Zhao WJ (2013) Transcriptomic analysis of Paulownia infected by Paulownia witches’ broom phytoplasma. Plos One 8:e77217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murmu J, Wilton M, Allard G, Pandeya R, Desveaux D, Singh J, Subramaniam R (2014) Arabidopsis GOLDEN2-LIKE GLK transcription factors activate jasmonic acid JA-dependent disease susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis, as well as JA-independent plant immunity against the necrotrophic pathogen Botrytis cinerea. Mol Plant Pathol 15:174–184

    Article  CAS  PubMed  Google Scholar 

  • Namba S (2011) Phytoplasmas: a century of pioneering research. J Gen Plant Pathol 776:345–349

    Article  Google Scholar 

  • Oshima K, Kakizawa S, Nishigawa H et al (2004) Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet 36:27–29

    Article  CAS  PubMed  Google Scholar 

  • Oshima K, Maejima K, Namba S (2013) Genomic and evolutionary aspects of phytoplasmas. Front Microbiol 4:230

    PubMed Central  PubMed  Google Scholar 

  • Prieschl EE, Baumruker T (2000) Sphingolipids: second messengers, mediators and raft constituents in signaling. Immunol Today 21:555–560

    Article  CAS  PubMed  Google Scholar 

  • Rébeillé F, Macherel D, Mouillon JM, Garin J, Douce R (1997) Folate biosynthesis in higher plants: purification and molecular cloning of a bifunctional 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase localized in mitochondria. EMBO J 16:947–957

    Article  PubMed Central  PubMed  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genom 12:148

    Article  CAS  Google Scholar 

  • Schneiderová K, Šmejkal K (2014) Phytochemical profile of Paulownia tomentosa (Thunb). Steud. Phytochem Rev. doi:10.1007/s11101-014-9376-y

  • Schwessinger B, Zipfel C (2008) News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol 11:389–395

    Article  CAS  PubMed  Google Scholar 

  • Slabas AR, Chase D, Nishida I et al (1992) Molecular cloning of higher-plant 3-oxoacyl-(acyl carrier protein) reductase. Sequence identities with the nodG-gene product of the nitrogen-fixing soil bacterium Rhizobium meliloti. Biochem J 283:321–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sugimoto H, Kondo S, Tanaka T et al (2014) Overexpression of a novel Arabidopsis PP2C isoform, AtPP2CF1, enhances plant biomass production by increasing inflorescence stem growth. J Exp Bot 65:5385–5400

    Article  PubMed Central  PubMed  Google Scholar 

  • Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA (2011) Diverse targets of phytoplasma effectors: from plant development to defense against insects. Ann Rev Phytopathol 49:175–195

    Article  CAS  Google Scholar 

  • Suzuki T, Ishikawa K, Yamashino T, Mizuno T (2002) An Arabidopsis histidine-containing phosphotransfer HPt factor implicated in phosphorelay signal transduction: overexpression of AHP2 in plants results in hypersensitiveness to cytokinin. Plant Cell Physiol 43:123–129

    Article  CAS  PubMed  Google Scholar 

  • Uematsu S, Sato S, Yamamoto M et al (2005) Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor TLR 7-and TLR9-mediated interferon-α induction. J Exp Med 201:915–923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M et al (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106:17588–17593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang J, Marks BD, Kahindo C et al (2010) Genetic and serological analyses of elongation factor EF-Tu of paulownia witches’ broom phytoplasma (16SrI-D). Plant Pathol 59:972–981

    Article  CAS  Google Scholar 

  • Win N, Kyu K, Lee Y, Kim Y, Back C, Chung H, Jung H (2012) Reclassification of aster yellows group phytoplasmas in Korea. J Gen Plant Pathol 78:264–268

    Article  Google Scholar 

  • Xiang LX, He D, Dong WR, Zhang YW, Shao JZ (2010) Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish. BMC Genom 11:472

    Article  Google Scholar 

  • Ye J, Fang L, Zheng H et al (2006) WEGO: a web tool for plotting GO annotations. Nucl Acids Res 34:W293–W297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yokoyama A, Yamashino T, Amano YI, Tajima Y, Imamura A, Sakakibara H, Mizuno T (2007) Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana. Plant Cell Physiol 48:84–96

    Article  CAS  PubMed  Google Scholar 

  • Zhai XQ, Cao XB, Fan GQ (2010) Growth of Paulownia witches’ broom seedlings treated with methyl methane sulphonate and SSR analysis. Sci Silv Sin 46:176–181

    CAS  Google Scholar 

  • Zhang YZ, Cao XB, Zhai XQ, Fan GQ (2009) DNA extraction of AFLP reaction system for the Paulownia plant. J Henan Agric Univ 43:610–614

    Google Scholar 

  • Zhang X, Li M, Agrawal A, San KY (2011) Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases. Metab Eng 13:713–722

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 30271082, 30571496), by the Outstanding Talents Project of Henan Province (Grant No. 122101110700), by the Transformation Project of the National Agricultural Scientific and Technological Achievement of China (Grant No. 2012GB2D000271), and by Science and Technology Innovation Team Project of Zhengzhou City (Grant No. 121PCXTD515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by J.-H Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, G., Cao, X., Zhao, Z. et al. Transcriptome analysis of the genes related to the morphological changes of Paulownia tomentosa plantlets infected with phytoplasma. Acta Physiol Plant 37, 202 (2015). https://doi.org/10.1007/s11738-015-1948-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1948-y

Keywords

Navigation