Skip to main content
Log in

Molecular characterisation of two plasmids from paulownia witches’-broom phytoplasma and detection of a plasmid-encoded protein in infected plants

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Two plasmids were cloned from paulownia witches’-broom phytoplasma-Nanyang strain (PaWBNy). Southern blotting using pPaWBNy-1ORF1 probe confirmed the existence of the two plasmids. The 4485 bp plasmid, designated pPaWBNy-1, had a nucleotide content of 24 mol% G+C and contained six putative open reading frames (ORFs). The 3837 bp plasmid, designated pPaWBNy-2, had a nucleotide content of 25.9 mol% G+C and contained five putative ORFs which showed similarity with ORFs in pPaWBNy-1. The two plasmids contained a series of tandem repeats and encoded a replication-associated protein (RepA) and a single-stranded DNA-binding protein (SSB), which were necessary for the replication of plasmids. Seven putative proteins encoded by two plasmids were predicted to contain one or more hydrophobic transmembrane domains, respectively, and presumably to be localised to the membrane. ORF4 from pPaWBNy-1 was partially cloned and the recombinant protein with His-tag expressed in Escherichia coli. The fusion protein was used for immunisation and the polyclonal antiserum to ORF4 protein detected the native expression of ORF4 protein in Western blot analysis from infected but not healthy plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bai, X., Zhang, J., Ewing, A., Miller, S. A., Jancso Radek, A., Shevchenko, D. V., et al. (2006). Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. Journal of Bacteriology, 188, 3682–3696.

    Article  PubMed  CAS  Google Scholar 

  • Berg, M., Davies, D. L., Clark, M. F., Vetten, H. J., Maier, G., Marcone, C., et al. (1999). Isolation of the gene encoding an immunodominant membrane protein of the apple proliferation phytoplasma, and expression and characterization of the gene product. Microbiology, 145, 1937–1943.

    Article  PubMed  CAS  Google Scholar 

  • Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 65, 232–260.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, N. M., Axelsen, K. B., Nicolaisen, M., & Schulz, A. (2005). Phytoplasmas and their interactions with hosts. Trends in Plant Science, 10, 526–535.

    Article  PubMed  CAS  Google Scholar 

  • Davis, M., Tsai, J., Cox, R., McDanniel, L., & Harrison, N. (1988). Cloning of chromosomal and extrachromosomal DNA of the mycoplasma-like organism that causes maize bushy stunt disease. Molecular Plant–Microbe Interactions, 1, 295–230.

    Google Scholar 

  • Doi, Y., Teranaka, M., Yoka, K., & Aauyama, H. (1967). Mycoplasma- or PLT group-like organisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’-broom, aster yellows, or paulownia witches’-broom. Annals of the Phytopathological Society of Japan, 33, 259–266.

    Google Scholar 

  • Doyle, J., & Doyle, J. L. (1987). Genomic Plant DNA preparation from fresh tissue-CTAB method. Phytochemical Bulletin, 19, 11.

    Google Scholar 

  • IRPCM Phytoplasma Spiroplasma Working Team Phytoplasma taxonomy group (2004). ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology, 54, 1243–1255.

    Article  CAS  Google Scholar 

  • Kirkpatrick, B. C., Stenger, D. C., Morris, T. J., & Purcell, A. H. (1987). Cloning and detection of DNA from a nonculturable plant pathogenic mycoplasma-like organism. Science, 238, 197–200.

    Article  PubMed  CAS  Google Scholar 

  • Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., & Bartoszyk, I. M. (1998). Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic and Evolutionary Microbiology, 48, 1153–1169.

    CAS  Google Scholar 

  • Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., Bottner, K. D., Marcone, C., & Seemüller, E. (2004). ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. International Journal of Systematic and Evolutionary Microbiology, 54, 1037–1048.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Tian, G. Z., Piao, C. G., & Zhu, S. F. (2005). Rapid molecular differentiation and identification of different phytoplasmas from several plants in China. Acta Phytopathologica Sinica, 35, 293–299.

    Google Scholar 

  • Liefting, L. W., Andersen, M. T., Lough, T. J., & Beever, R. E. (2006). Comparative analysis of the plasmids from two isolates of “Candidatus Phytoplasma australiense”. Plasmid, 56, 138–144.

    Article  PubMed  CAS  Google Scholar 

  • Liefting, L. W., Shaw, M. E., & Kirkpatrick, B. C. (2004). Sequence analysis of two plasmids from the phytoplasma beet leafhopper-transmitted virescence agent. Microbiology, 150, 1809–1817.

    Article  PubMed  CAS  Google Scholar 

  • Mounsey, K. E., Streten, C., & Gibb, K. S. (2006). Sequence characterization of four putative membrane-associated proteins from sweet potato little leaf strain V4 phytoplasma. Plant Pathology, 55, 29–35.

    Article  CAS  Google Scholar 

  • Nakashima, K., & Hayashi, T. (1997). Sequence analysis of extrachromosomal DNA of sugarcane white leaf phytoplasma. Annals of Phytopathological Society of Japan, 63, 21–25.

    CAS  Google Scholar 

  • Nishigawa, H., Miyata, S., Oshima, K., Sawayanagi, T., Komoto, A., Kuboyama, T., et al. (2001). In planta expression of a protein encoded by the extrachromosomal DNA of a phytoplasma and related to geminivirus replication proteins. Microbiology, 147, 507–513.

    PubMed  CAS  Google Scholar 

  • Nishigawa, H., Oshima, K., Kakizawa, S., Jung, H., Kuboyama, T., Miyata, S., et al. (2002). Evidence of intermolecular recombination between extrachromosomal DNAs in phytoplasma: a trigger for the biological diversity of phytoplasma? Microbiology, 148, 1389–1396.

    PubMed  CAS  Google Scholar 

  • Nishigawa, H., Oshima, K., Miyata, S., Ugaki, M., & Namba, S. (2003). Complete set of extrachromosomal DNAs from three pathogenic lines of onion yellows phytoplasma and use of PCR to differentiate each line. Journal of General Plant Pathology, 69, 194–198.

    CAS  Google Scholar 

  • Novichkov, P. S., Omelchenko, M. V., Gelfand, M. S., Mironov, A. A., Wolf, Y. I., & Koonin, E. V. (2004). Genome-wide molecular clock and horizontal gene transfer in bacterial evolution. Journal of Bacteriology, 186, 6575–6585.

    Article  PubMed  CAS  Google Scholar 

  • Oshima, K., Kakizawa, S., Nishigawa, H., Kuboyama, T., Miyata, S.-I., Ugaki, M., et al. (2001). A plasmid of phytoplasma encodes a unique replication protein having both plasmid- and virus-like domains: clue to viral ancestry or result of virus/plasmid recombination? Virology, 285, 270–277.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). New York, USA: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Schneider, B., Maurer, R., Saillard, C., Kirkpatrick, B., & Seemüller, E. (1992). Occurrence and relatedness of extrachromosomal DNAs in plant pathogenic mycoplasma like organisms. Molecular Plant–Microbe Interactions, 5, 489–495.

    CAS  Google Scholar 

  • Shiozawa, H., Yamashita, S., Doi, Y., Yora, K., & Suyama, H. (1979). Trial of transmission of paulownia witches’-broom by two species of bug, brown marmorated stink bug and brown-winged green bug, observed on paulownia. Annals of the Phytopathological Society of Japan, 45, 130–131.

    Google Scholar 

  • Suzuki, S., Oshima, K., Kakizawa, S., Arashida, R., Jung, H.-Y., Yamaji, Y., et al. (2006). Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proceedings of the National Academy of Sciences of the United States of America, 103, 4252–4257.

    Article  PubMed  CAS  Google Scholar 

  • Tian, G. Z., & Raychaudhuri, S. P. (1996). Paulownia witches’ broom disease in China: present status. In R. S. Raychaudhuri, & K. Moromorosch (Eds.), Forest in trees and palms: Diseases and control (pp. 227–251). New Dehli: Oxford and IBH.

    Google Scholar 

  • Tian, G. Z., Zhang, X. J., Luo, F., & Zhu, S. F. (1999). Responses of resistant and susceptible clones of in vitro cultured paulownia to the graft inoculation with phytoplasmas. Scientia Silvae Sineae, 35, 31–39.

    Google Scholar 

  • Tian, G. Z., Zhu, S. F., Luo, F., Li, H. F., & Qiu, W. F. (2001). Effects of Agrobacterium tumefaciens on the symptoms of Paulownia sp. plantlet in vitro cultured. Forest Research, 14, 258–264.

    Google Scholar 

  • Tran-Nguyen, L. T. T., & Gibb, K. S. (2006). Extrachromosomal DNA isolated from tomato big bud and Candidatus Phytoplasma australiense phytoplasma strains. Plasmid, 56, 153–166.

    PubMed  CAS  Google Scholar 

  • Vivian, A., Murillo, J., & Jackson, R. W. (2001). The roles of plasmids in phytopathogenic bacteria: Mobile arsenals? Microbiology, 147, 763–780.

    PubMed  CAS  Google Scholar 

  • Wegrzyn, G. (2005). What does “plasmid biology” currently mean?: summary of the Plasmid Biology 2004 meeting. Plasmid, 53, 14–22.

    Article  PubMed  CAS  Google Scholar 

  • Ye, F., Melcher, U., & Fletcher, J. (1997). Molecular characterization of a gene encoding a membrane protein of Spiroplasma citri. Gene, 189, 95–100.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, W., Song, X., Ren, S., Ao, H., & Dong, Z. (1990). Research on the pathogen and virus spread of witches’-broom of paulownia. Shaanxi Forest Science and Technology, 18(1),23–25.

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No.30471393).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zai-Feng Fan or Guo-Zhong Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CL., Zhou, T., Li, HF. et al. Molecular characterisation of two plasmids from paulownia witches’-broom phytoplasma and detection of a plasmid-encoded protein in infected plants. Eur J Plant Pathol 123, 321–330 (2009). https://doi.org/10.1007/s10658-008-9369-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-008-9369-z

Keywords

Navigation