Skip to main content
Log in

Characterization of a glutamine synthetase gene BnGS1-2 from ramie (Boehmeria nivea L. Gaud) and biochemical assays of BnGS1-2-over-expressing transgenic tobacco

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Glutamine synthetase (GS) plays fundamental roles in nitrogen metabolism in higher plants. Ramie (Boehmeria nivea L. Gaud) has excellent forage and rapid growth characteristics, and isolated BnGS1-2 is closely related to that of legumes, potentially providing gene resources for nitrogen uptake and assimilation. Consequentially, transgenic studies involving the over-expression of BnGS1-2 in Nicotiana tabacum were performed to investigate the potential function and application of BnGS1-2 in higher plants. Comparative analysis of nitrogen use efficiency (NUE) was performed during wild type and independent transgenic lines with various in GS activity at the mRNA and protein levels. Our results indicate that the BnGS1-2-over-expressing transgenic lines significantly enhanced the fresh weight, dry weight and plant height. Simultaneously, the transgenic lines had higher soluble protein content and higher total nitrogen content than the control plants under normal planting condition. The range of enhancement positively associated with BnGS1-2 activities in different transgenic lines. The over-expression of BnGS1-2 in tobacco resulted in a significant decrease in leaf-free NH4 + content. Simultaneously, the transgenic lines increased the NO3 uptake and NH4 + assimilation with a remarkable increase in the NR activity and no change in the free NO3 content. These results indicate that BnGS1-2 would be an excellent gene resource for improvement of plants biomass and NUE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Artus NN, Somerville SC, Somerville CR (1986) The biochemistry and cell biology of photorespiration. Crit Rev Plant Sci 4:121–147

    Article  CAS  Google Scholar 

  • Bernard SM, Moller ALB, Dionisio G et al (2008) Gene expression, cellular localization and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). Plant Mol Biol 67:89–105

    Article  CAS  PubMed  Google Scholar 

  • Broyart C, Fontaine JX, Molinie R et al (2010) Metabolic profiling of maize mutants deficient for two glutamine synthetase isoenzymes using 1H-NMR-based metabolomics. Phytochem Anal 21:102–109

    Article  CAS  PubMed  Google Scholar 

  • Cai HM (2009) Functional analysis of overexpressing glutamine synthetase, nitrate transporter and ammonium transporter 1 genes for nitrogen assimilation in rice. Dissertation, Huazhong Agricultural University (in Chinese)

  • Cai HM, Zhou Y, Xiao JH et al (2009) Overexpression glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep 28:527–537

    Article  CAS  PubMed  Google Scholar 

  • Cataldo DA, Haroon M, Schrader LE et al (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic. Commun Soil Sci Plant Anal 6:71–80

    Article  CAS  Google Scholar 

  • Clemente MT, Marquez AJ (1999a) Functional importance of Asp56 from the alpha-polypeptide of phaseolus vulgaris glutamine synthetase—an essential residue for transferase but not for biosynthetic enzyme activity. Eur J Biochem 264:453–460

    Article  CAS  PubMed  Google Scholar 

  • Clemente MT, Marquez AJ (1999b) Site-directed mutagenesis of Cys-92 from the alpha-polypeptide of phaseolus vulgaris glutamine synthetase alters kinetic and structural properties and confers resistance to l-methionine sulfoximine. Plant Mol Biol 40:835–845

    Article  CAS  PubMed  Google Scholar 

  • Clemente MT, Marquez AJ (2000) Site-directed mutagenesis of Cys-92 from the alpha-polypeptide of Phaseolus vulgaris glutamine synthetase reveals that this highly conserved residue is not essential for enzyme activity but it is involved in thermal stability. Plant Sci 67:189–197

    Article  Google Scholar 

  • Downs CG, Borst WM, Hurst PL et al (1994) Isoforms of glutamine synthetase in asparagus spears: the cytososic enzyme increases after harvest. Plant, Cell Environ 17:1045–1052

    Article  CAS  Google Scholar 

  • Fan CC, Xing YZ, Mao HL et al (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Fei H, Chaillou S, Hirel B et al (2003) Overexpression of a soybean cytosolic glutamine synthetae gene linked to organ specific promoters in pea plants grown in different concentration of nitrate. Planta 216:467–474

    CAS  PubMed  Google Scholar 

  • Fei H, Chaillou S, Hirel B et al (2006) Effects of the overexpression of a soybean cytosolic glutamine synthetase gene (GS15) linked to organ-specific promoters on growth and nitrogen accumulation of pea plants supplied with ammonium. Plant Physiol Biochem 44:543–550

    Article  CAS  PubMed  Google Scholar 

  • Fuentes SI, Allen DJ, Ortiz-Lopez A et al (2001) Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. J Exp Bot 52:1071–1081

    Article  CAS  PubMed  Google Scholar 

  • Gadaleta A, Nigro D, Giancaspro A et al (2011) The glutamine synthetase (GS2) genes in relation to grain protein content of durum wheat. Funct Integr Genomics 11:665–670

    Article  CAS  PubMed  Google Scholar 

  • Gallais A, Hirel B (2004) An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot 55:295–306

    Article  CAS  PubMed  Google Scholar 

  • Goda K, Sreekala M, Gomes A et al (2006) Improvement of plant based natural fibers of toughening green composites-Effect of load application during mercerization of ramie fibers. Compos A Appl Sci Manuf 37:2213–2220

    Article  Google Scholar 

  • Goodall AJ, Kumar P, Tobin AK (2013) Identification and expression analyses of cytosolic glutamine synthetase genes in barley (Hordeum vulgare L.). Plant Cell Physiol 54:492–505

    Article  CAS  PubMed  Google Scholar 

  • Gordon SA, Fleck A, Bell J (1978) Optimal conditions for the estimation of ammonium by the Berthelot reaction. Ann Clin Biochem 15:270–275

    Article  CAS  PubMed  Google Scholar 

  • Hirel B, Gouis LJ, Ney B et al (2007) The challenge of improving Nitrogen Use Efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fry JW, Hoffman NL et al (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hoshida H, Tanaka Y, Hibino T et al (2000) Enhanced tolerance to salt stress in transgenic rice that over-expresses chloroplast glutamine synthetase. Plant Mol Biol 43:103–111

    Article  CAS  PubMed  Google Scholar 

  • Jie YC, Kang WL, Xing HC et al (2009) Screening of ramie gene resources for forage. Pratacultural Science 26:30–33 (in Chinese)

    CAS  Google Scholar 

  • Kanamori T, Matsumoto H (1972) Glutamine synthetase from rice plant roots. Arch Biochem Biophys 152:404–412

    Article  CAS  PubMed  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidatioon. Nature 384:557–560

    Article  CAS  Google Scholar 

  • Lam HM, Coschigano K, Oliveira IC et al (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:569–593

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Abdula SE, Jang DW et al (2013) Overexpression of the glutamine synthetase gene modulates oxidative stress response in rice after exposure to cadmium stress. Plant Cell Rep 32:1521–1529

    Article  CAS  PubMed  Google Scholar 

  • Man HM, Boriel R, El-Khatib R et al (2005) Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol 167:31–39

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Lee J, Kichey T et al (2006) Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 18:3252–3274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCormick S, Niedermeyer J, Fry J et al (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5:81–84

    Article  CAS  PubMed  Google Scholar 

  • Melo PM, Lima LM, Santos IM et al (2003) Expression of the plastid-located glutamine synthetase of Medicago truncatula: accumulation of the precursor in root nodules reveals an in vivo control at the level of protein import into plastids. Plant Physiol 132:390–399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Novotny V, Englande AJ, Wang X et al (2007) Use of agricultural chemicals in China, India, Thailand and the Philippines and their environmental and human impact. Boston

  • Obara M, Sato T, Sasaki S et al (2004) Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice. Theor Appl Genet 110:1–11

    Article  CAS  PubMed  Google Scholar 

  • Oliveira IC, Brears T, Knight TL et al (2002) Overexpression of cytosolic glutamine synthetase. Relation to nitrogen, light, and photorespiration. Plant Physiol 129:1170–1180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Orea A, Pajuelo P, Pajuelo E et al (2002) Isolation of photorespiratory mutants from Lotus japonicus deficient in glutamine synthetase. Physiol Plant 115:352–361

    Article  CAS  PubMed  Google Scholar 

  • Ortega JL, Temple SJ, Bagga S et al (2004) Biochemical and molecular characterization of transgenic Lotus japonicus plants constitutively over-expressing a cytosolic glutamine synthetase gene. Planta 219:807–818

    Article  CAS  PubMed  Google Scholar 

  • Ortega JL, Moguel-Esponda S, Potenza C (2006) The 3′ untranslated region of a soybean cytosolic glutamine synthetase (GS1) affects transcript stability and protein accumulation in transgenic alfalfa. Plant J 45:832–846

    Article  CAS  PubMed  Google Scholar 

  • Seger M, Ortega JL, Bagga S et al (2009) Repercussion of mesophyll-specific overexpression of a soybean cytosolic glutamine synthetase gene in alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.). Plant Sci 176:119–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silveira JAG, Matos JCS, Cecatto VM et al (2001) Nitrate reductase activity, distribution, and response to nitrate in two contrasting Phaseolus species inoculated with Rhizobium spp. Environ Exp Bot 46:37–46

    Article  CAS  PubMed  Google Scholar 

  • Suarez R, Marquez J, Shishkova S et al (2003) Overexpression of alfalfa cytosolic glutamine synthetase in nodules and flowers of transgenic Lotus japonicus plants. Physiol Plant 117:326–336

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi M, Sugiyama T, Ishiyama K et al (2005) Severe reduction in growth and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant J 42:641–651

    Article  CAS  PubMed  Google Scholar 

  • Temple SJ, Knight TJ, Unkefer PJ et al (1993) Modulation of glutamine synthetase gene expression in tobacco by the introduction of an alfalfa glutamine synthetase gene in sense and antisense orientation: molecular and biochemical analysis. Mol Gen Genet 236:315–325

    Article  CAS  PubMed  Google Scholar 

  • Tobin AK, Yamaya T (2001) Cellular compartmentation of ammonium assimilation in rice and barely. J Exp Bot 52:591–604

    Article  CAS  PubMed  Google Scholar 

  • Vincent R, Fraiser V, Chaillou S et al (1997) Over expression of a soybean gene encoding cytosolic glutamine synthetase in shoots of transgenic Lotus corniculatus L. plants triggers changes in ammonium assimilation and plant development. Planta 201:424–433

    Article  CAS  PubMed  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Volkov RA, Panchuk II, Schoffi F (2003) Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J Exp Bot 54:2343–2349

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Replogle A, Davis EL et al (2007) The tobacco Cel7 gene promoter is auxin-responsive and locally induced in nematode feeding sites of heterologous plants. Molecular Plant Pathology 8:423–436

    Article  CAS  PubMed  Google Scholar 

  • Xiong HP (2001) The potential of ramie multi-functional development and utilization. Plant Fiber Sci China 23:22–25 (in Chinese)

    Google Scholar 

  • Yamaya T, Obara M, Nakajima H et al (2002) Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot 53:917–925

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Fan Q, Wang W et al (2014) Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana. Gene 536:407–415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Science and Technology Support Program of the China (2010BAD02B01). The authors thank Tobacco Research Institute of CAAS for the gift of the Nicotiana tabacum L. cv. Zhongyan 100 and Cotton Research Institute of CAAS for providing pBI121 vector. We also thank Dr. Lynne Hyman for critical reading of the manuscript and Minyan Wang for his helpful work.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Ping Xiong.

Additional information

Communicated by G. Klobus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, JS., Yu, CM., Chen, P. et al. Characterization of a glutamine synthetase gene BnGS1-2 from ramie (Boehmeria nivea L. Gaud) and biochemical assays of BnGS1-2-over-expressing transgenic tobacco. Acta Physiol Plant 37, 1742 (2015). https://doi.org/10.1007/s11738-014-1742-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-014-1742-2

Keywords

Navigation