Skip to main content
Log in

The in vitro antioxidant capacities of Polianthes tuberosa L. flower extracts

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

This study was designed to examine the chemical compositions of scent volatiles and antioxidant activities of Polianthes tuberosa L. flower extract in six different solvents. The main constituents of the volatile components were benzyl benzoate, methyl 2-amino benzoate, methyl isoeugenol, isoeugenol, benzyl salicylate, methyl salicylate, geraniol and 1,8-cineole. Total phenolic content of floral extracts in water, methanol, ethanol, ethyl acetate, hexane and dichloromethane were found to be 0.094, 0.18, 0.14, 0.007, 0.004 and 0.110 mg gallic acid equivalent/mg fresh weight, respectively. The methanol soluble fraction showed highest values of antioxidant activity through DPPH and ABTS assays. Methanol extract effectively inhibits the non site-specific DNA strand breakage caused by Fenton’s reagents. Dichloromethane and aqueous fractions also exhibited high antioxidant capacities. Aqueous extract showed highest value in FRAP assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrate in plant tissues using Folin–Ciocalteu reagent. Nat Protoc 2:875–877

    Article  PubMed  CAS  Google Scholar 

  • Amarowicz R, Troszynska A (2004) Antioxidant and antiradical activity of extracts of phenolic compounds from red bean. Czech J Food Sci 22:206–208

    CAS  Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  PubMed  CAS  Google Scholar 

  • Brahmi F, Mechri B, Flamini G, Dhibi M, Hammami M (2013) Antioxidant activities of the volatile oils and methanol extracts from olive stems. Acta Physiol Plant 35:1061–1070

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  • Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184

    Article  PubMed  CAS  Google Scholar 

  • Cheung LM, Cheung PCK, Ooi VEC (2003) Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 81:249–255

    Article  CAS  Google Scholar 

  • Chopra RN, Nayar SL and Chopra IC (1999) Glossary of Indian medicinal plants, National Institute of Science communication, Council of Scientific and Industrial Research, New Delhi, India, p 199

  • El-Moghazy AM, Ali AA, Ross SA, EL-Shanawany MA (1980) Phytochemical studies on Polianthes tuberosa L. Fitoterapia 51:179–181

    CAS  Google Scholar 

  • Foti MC, Johnson ER, Vinqvist MR, Wright JS, Barclay LRC, Ingold KU (2002) Naphthalene diols: a new class of antioxidants intramolecular hydrogen bonding in catechols, naphthalene diols, and their aryloxyl radicals. J Org Chem 67:5190–5196

    Article  PubMed  CAS  Google Scholar 

  • Foti MC, Daquino C, Mackie ID, DiLabio GA, Ingold KU (2008) Reaction of phenols with the 2,2-diphenyl-1-picrylhydrazyl radical. Kinetics and DFT calculations applied to determine ArO–H bond dissociation enthalpies and reaction mechanism. J Org Chem 73:9270–9282

    Article  PubMed  CAS  Google Scholar 

  • Hay RK, Waterman PG (1993) Volatile oil crops: their biology, biochemistry and production. Longman Scientific & Technical, Harlow

    Google Scholar 

  • Hussain HH, Babic G, Durst T, Wright JS, Flueraru M, Chichirau A, Chepelev LL (2003) Development of novel antioxidants: design, synthesis, and reactivity. J Org Chem 68:7023–7032

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Kawamoto A, Kita Y, Yukawa T, Kurita S (1999) Phylogenetic relationships of Amaryllidaceae based on matK sequence data. J Plant Res 112:207–216

    Article  CAS  Google Scholar 

  • Jin JM, Zhang YJ, Yang CR (2004) Spirostanol and furostanol glycosides from the fresh tubers of Polianthes tuberosa. J Nat Prod 67:5–9

    Article  PubMed  CAS  Google Scholar 

  • Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    Article  PubMed  CAS  Google Scholar 

  • Kaviarasan S, Naik GH, Gangabhagirathi R, Anuradha CV, Priyadarsini KI (2007) In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum graecum) seeds. Food Chem 103:31–37

    Article  CAS  Google Scholar 

  • Kim JM, Marshall MR, Cornell JA, Preston JF, Wei CIJ (1995) Antibacterial Activity of carvacrol, citral, and geraniol against Salmonella typhimurium in culture medium and on fish cubes. Food Sci 60:1364–1368

    Article  CAS  Google Scholar 

  • Kiruthika KA, Jaisheeba AA, Sornaraj R (2011) Evaluation of antibacterial activity of some selected angiosperm flower extracts. Int J Chem Tech Res 3:1945–1951

    Google Scholar 

  • Kiselova Y, Ivanova D, Chervenkov T, Gerova D, Galunska B, Yankova T (2006) Correlation between the in vitro antioxidant activity and polyphenol content of aqueous extracts from Bulgarian herbs. Phytother Res 20:961–965

    Article  PubMed  CAS  Google Scholar 

  • Kitts DD, Wijewickreme AN, Hu C (2000) Antioxidant properties of a North American ginseng extract. Mol Cell Biochem 203:1–10

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Moon UR, Mitra A (2012) Rapid separation of carotenes and evaluation of their in vitro antioxidant properties from ripened fruit waste of Areca catechu––a plantation crop of agro-industrial importance. Ind Crop Prod 40:204–209

    Article  CAS  Google Scholar 

  • Lapornik B, Prosek M, Wondra AG (2005) Comparison of extracts prepared from plant by-products using different solvents and extraction time. J Food Eng 71:214–222

    Article  Google Scholar 

  • Maliga L (2003) Tantalizing tuberose. The Chamomile Times and Herbal News. http://www.lisamaliga.com/ChamomileTimes.htm. Accessed 14 December 2013

  • Malosso E, English L, Hopkins DW, O’Donnell AG (2004) Use of 13 C-labelled plant materials and ergosterol, PLFA and NLFA analyses to investigate organic matter decomposition in Antarctic soil. Soil Biol Biochem 36:165–175

    Article  CAS  Google Scholar 

  • Marteau C, Nardello-Rataj V, Favier D, Aubry JM (2012) Dual role of phenols as fragrances and antioxidants: mechanism, kinetics and drastic solvent effect. Flavour Fragr J 28:30–38

    Article  Google Scholar 

  • Moon UR, Sen SK, Mitra A (2014) Antioxidant capacities and acetylcholinesterase-inhibitory activity of Hoppea fastigiata. J Herbs Spices Med Plants 20:115–123

    Article  Google Scholar 

  • Pearson DA, Frankel EN, Aeschbach R, German JB (1998) Inhibition of endothelial cell mediated low-density lipoprotein oxidation by green tea extracts. J Agric Food Chem 46:1445–1449

    Article  CAS  Google Scholar 

  • Piccaglia R, Marotti M, Giovanelli E, Deans SG, Eaglesham E (1993) Antibacterial and antioxidant properties of Mediterranean aromatic plants. Ind Crop Prod 2:47–50

    Article  CAS  Google Scholar 

  • Raguso RA, Pichersky E (1995) Floral volatiles from Clarkia breweri and Clarkia concinna (Onagraceae): recent evolution of floral scent and moth pollination. Plant Syst Evol 194:55–67

    Article  CAS  Google Scholar 

  • Rammamurthy J, Venkataraman S, Meera R, Prasad S, Chiristina AJM, Devi P (2010) Phytochemical investigation of Polianthes tuberosa. Int J Pharm Tech Res 2:1204–1206

    CAS  Google Scholar 

  • Rawani A, Banerjee Chandra G (2012) Mosquito larvicidal and biting deterrency activity of bud of Polianthes tuberosa plants extract against Anopheles stephensi and Culex quinquefasciatus. Asian Pac J Trop Dis 2:200–204

    Article  Google Scholar 

  • Re R, Pellegrinni N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  PubMed  CAS  Google Scholar 

  • Roberts BP, Steel AJ (1994) An extended form of the Evans–Polanyi equation: a simple empirical relationship for the prediction of activation energies for hydrogen-atom transfer reactions. J Chem Soc Perkin Trans 2:2155–2162

    Article  Google Scholar 

  • Sahu NP, Banerjee S, Mondal NB, Mandal D (2008) Steroidal saponins. In: Kinghorn AD, Falk H, Kobayashi J (eds) Fortschritte der Chemie organischer Naturstoffe/Progress in the chemistry of organic natural products, 89th edn. Springer, Vienna, pp 45–141

  • Siddhuraju P, Manian S (2007) The antioxidant activity and free-radical scavenging capacity of dietary phenolic extracts from horse gram (Macrotyloma uniflorum (Lam.) Verdc.) seeds. Food Chem 105:950–958

    Article  CAS  Google Scholar 

  • Siddhuraju P, Mohan PS, Becker K (2002) Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): a preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chem 79:61–67

    Article  CAS  Google Scholar 

  • Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ (2004) The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavour volatiles b-ionone, pseudoionone, and geranylacetone. Plant J 40:882–892

    Article  PubMed  CAS  Google Scholar 

  • Singh PR, Murthy KNC, Jayaprakasha GK (2002) Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J Agric Food Chem 50:81–86

    Article  PubMed  CAS  Google Scholar 

  • Turlings TCJ, Alborn HT, Loughrin JH, Tumlinson JH (2000) Volicitin an elicitor of maize volatiles in oral secretion of Spodoptera exigua: isolation and bioactivity. J Chem Ecol 26:189–202

    Article  CAS  Google Scholar 

  • Wei A, Shibamoto T (2007) Antioxidant activities and volatile constituents of essential oils. J Agric Food Chem 54:1737–1742

    Article  Google Scholar 

  • Wildermuth MC (2006) Variation on a theme: synthesis and modification of plant benzoic acids. Curr Opin Plant Biol 9:288–296

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Chen S, Hu Q (2005) Antioxidant activity of brown pigment and extracts from black sesame seed (Sesamum indicum L.). Food Chem 91:79–83

    Article  CAS  Google Scholar 

  • Yilmaz Y, Toledo RT (2006) Oxygen radical absorbance capacities of grape/wine industry byproducts and effect on solvent type on extraction of grape seed polyphenols. J Food Comp Anal 19:41–48

    Article  CAS  Google Scholar 

  • Zhou K, Yu L (2004) Effects of solvent extraction on wheat bran antioxidant activity estimation. LWT Food Sci Technol 37:717–721

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant [38(1336)/12/EMR-II to A Mitra] from the Council of Scientific & Industrial Research (CSIR), India. Saborni Maiti, Utkarsh Ravindra Moon and Paramita Bera are recipients of individual research fellowships from CSIR, UGC and DST (INSPIRE), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adinpunya Mitra.

Additional information

Communicated by J. V. Jorrin-Novo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiti, S., Moon, U.R., Bera, P. et al. The in vitro antioxidant capacities of Polianthes tuberosa L. flower extracts. Acta Physiol Plant 36, 2597–2605 (2014). https://doi.org/10.1007/s11738-014-1630-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1630-9

Keywords

Navigation