Skip to main content
Log in

Cloning and characterization of NtSnRK2.7 and NtSnRK2.8 genes involved in abiotic stress responses from Nicotiana tabacum

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Sucrose non-fermenting1-related protein kinase 2 (SnRK2) plays a key role in abiotic stress signaling in plants. In this study, gene structures, phylogeny, conserved motifs and promoters of NtSnRK2.7 and NtSnRK2.8 in tobacco have been analyzed. Phylogenetic analysis showed that NtSnRK2.7 and NtSnRK2.8 belong to subclass I and subclass III of SnRK2, respectively. They exhibited similar genomic structures, consisting of 9 exons and 8 introns. Subcellular localization showed the presence of NtSnRK2s in the cell membrane, cytoplasm and nucleus. Quantitative real-time PCR was used to analyze the expression patterns of NtSnRK2s in tobacco. NtSnRK2s were constitutively expressed strongly in roots, weakly in stems, and marginally in leaves. Abiotic stress response analyses revealed that NtSnRK2.7 and NtSnRK2.8 were involved in response to various abiotic stresses with different patterns: there was evidence that NtSnRK2.7 participated in abscisic acid-independent signaling pathways, while the transcription of NtSnRK2.8 was induced by abscisic acid treatment; NtSnRK2.7 responded much faster to salt and cold stress. Furthermore, expression of NtSnRK2.8 increased intensely and reached its maximum at 1 h under drought stress indicating that it is sensitive to osmotic stress. Our results suggest that NtSnRK2.7 and NtSnRK2.8 are involved in multiple stress response pathways in distinct ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderberg RJ, Walker-Simmons MK (1992) Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci USA 89:10183–10187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boudsocq M, Barbier-Brygoo H, Lauriere C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279:41758–41766

    Article  CAS  PubMed  Google Scholar 

  • Cohen P (1988) Protein phosphorylation & hormone action. Proc R Soc Lond B Biol Sci 234:115–144

    Article  CAS  PubMed  Google Scholar 

  • Diedhiou CJ, Popova OV, Dietz KJ, Golldack D (2008) The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biol 8:49

    Article  PubMed Central  PubMed  Google Scholar 

  • Du H, Yang SS, Liang Z, Feng BR, Liu L, Huang YB, Tang YX (2012) Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biol 12:106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50:2123–2132

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Cadenas A, Verhey SD, Holappa LD, Shen Q, Ho TH, Walker-Simmons MK (1999) An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. Proc Natl Acad Sci USA 96:1767–1772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gómez-Cadenas A, Zentella R, Walker-Simmons MK, Ho THD (2001) Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell 13:667–679

    Article  PubMed Central  PubMed  Google Scholar 

  • Gupta K, Gupta B, Ghosh B, Sengupta DN (2012a) Spermidine and abscisic acid-mediated phosphorylation of a cytoplasmic protein from rice root in response to salinity stress. Acta Physiol Plant 34:29–40

    Article  CAS  Google Scholar 

  • Gupta B, Gupta K, Sengupta DN (2012b) Spermidine-mediated in vitro phosphorylation of transcriptional regulator OSBZ8 by SNF1-type serine/threonine protein kinase SAPK4 homolog in indica rice. Acta Physiol Plant 34:1321–1336

    Article  CAS  Google Scholar 

  • Halford NG, Hardie D (1998) SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol Biol 37:735–748

    Article  CAS  PubMed  Google Scholar 

  • Halford NG, Hey SJ (2009) Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J 419:247–259

    Article  CAS  PubMed  Google Scholar 

  • Hanson MR, Köhler RH (2001) GFP imaging: methodology and application to investigate cellular compartmentation in plants. J Exp Bot 52:529–539

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Article  CAS  PubMed  Google Scholar 

  • Harmon AC, Yoo BC, McCaffery C (1994) Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33:7278–7287

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Chen L, Wang J, Xu D, Dai L, Zhang H, Zhao Y (2012) Construction of stress responsive synthetic promoters and analysis of their activity in transgenic Arabidopsis thaliana. Plant Mol Biol Rep 30:1496–1506

    Article  CAS  Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M et al (2003) The Arabidopsis CDPK–SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huai J, Wang M, He J, Zheng J, Dong Z, Lv H, Zhao J, Wang G (2008) Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep 27:1861–1868

    Article  CAS  PubMed  Google Scholar 

  • Huang JF, Teyton L, Harper JF (1996) Activation of a Ca(2+)-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain. Biochemistry 35:13222–13230

    Article  CAS  PubMed  Google Scholar 

  • Johnson RR, Wagner RL, Verhey SD, Walker-Simmons MK (2002) The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol 130:837–846

    Article  PubMed Central  PubMed  Google Scholar 

  • Kelner A, Pekala L, Kaczanowski S, Muszynska G, Hardie DG, Dobrowolska G (2004) Biochemical characterization of the tobacco 42-KD protein kinase activated by osmotic stress. Plant Physiol 136:3255–3265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Shiu SH, Thoma S, Li WH, Patterson S (2006) Patterns of expansion and expression divergence in the plant polygalacturonase gene family. Genome Biol 7(9):R87

    Article  PubMed Central  PubMed  Google Scholar 

  • Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T (2004) Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16:1163–1177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G (2011) SnRK2 protein kinases—key regulators of plant response to abiotic stresses. OMICS 15:859–872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Livaka KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  Google Scholar 

  • Mao XG, Zhang HY, Tian SJ, Chang XP, Jing RL (2010) TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot 61:683–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McLoughlin F, Galvan-Ampudia CS, Julkowska MM, Caarls L, Does DVD, Laurière C, Munnik T, Haring MA, Testerink C (2012) The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. Plant J 72:436–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pang T, Bai CM, Xu YJ, Xu GW, Yuan ZY, Su Y, Peng LM (2006) Determination of sugars in tobacco leaf by HPLC with evaporative light scattering detection. J Liq Chromatogr Relat Technol 29:1281–1289

    Article  CAS  Google Scholar 

  • Park SY, Fung P, Nishimura N et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saha J, Chatterjee C, Sengupta A, Gupta K, Gupta B (2013) Genome-wide analysis and evolutionary study of sucrose non-fermenting 1-related protein kinase 2 (SnRK2) gene family members in Arabidopsis and Oryza. Comput Biol Chem. doi:10.1016/j.compbiolchem.2013.09.005

  • Sheard LB, Zheng N (2009) Plant biology: signal advance for abscisic acid. Nature 462:575–576

    Article  CAS  PubMed  Google Scholar 

  • Stolf-Moreira R, Lemos EG, Carareto-Alves L, Marcondes J, Pereira SS, Rolla AA, Pereira RM, Neumaier N, Binneck E, Abdelnoor RV (2011) Transcriptional profiles of roots of different soybean genotypes subjected to drought stress. Plant Mol Biol Rep 29:19–34

    Article  Google Scholar 

  • Tian SJ, Mao XG, Zhang HY, Chen S, Zhai C, Yang S, Jing RL (2013) Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat. J Exp Bot 64:2063–2080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez PL, Laurière C, Merlot S (2009) Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21:3170–3184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wawer I, Bucholc M, Astier J, Anielska-Mazur A, Dahan J, Kulik A, Wyslouch-Cieszynska A, Zareba-Koziol M, Krzywinska E, Dadlez M (2010) Regulation of Nicotiana tabacum osmotic stress-activated protein kinase and its cellular partner GAPDH by nitric oxide in response to salinity. Biochem J 429:73–83

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:165–183

    Article  Google Scholar 

  • Xu MR, Huang LY, Zhang F, Zhu LH, Zhou YL, Li ZK (2013) Genome-wide phylogenetic analysis of stress-activated protein kinase genes in rice (OsSAPKs) and expression profiling in response to Xanthomonas oryzae pv. oryzicola infection. Plant Mol Biol Rep 31:877–885

    Article  CAS  Google Scholar 

  • Zhang HY, Mao XG, Wang CS, Jing RL (2010) Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS One 5:e16041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang HY, Mao XG, Jing RL, Xie HM (2011) Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses. J Exp Bot 62:975–988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng ZF, Xu XP, Crosley RA et al (2010) The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant Physiol 153:99–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from State Tobacco Monopoly Administration of China (No. 110200902045) and the research program on the metabolism and molecular basis of strong-flavor characteristic high-quality tobacco formation (No. TS-01-2011004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Cui.

Additional information

Communicated by J. Kovacik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Jia, H., Liu, G. et al. Cloning and characterization of NtSnRK2.7 and NtSnRK2.8 genes involved in abiotic stress responses from Nicotiana tabacum . Acta Physiol Plant 36, 1673–1682 (2014). https://doi.org/10.1007/s11738-014-1542-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1542-8

Keywords

Navigation