Skip to main content
Log in

Cloning and expression analysis of Cs-TIR1/AFB2: the fruit development-related genes of cucumber (Cucumis sativus L.)

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Phytohormone auxin plays an important role in fruit development and is perceived by the TIR1/AFB family of F-box proteins as auxin receptors involved in auxin signal pathway. Cucumber (Cucumis sativus L.) fruit development is either parthenocarpic or non-parthenocarpic. However, little is known on TIR1 and AFB participation in the early stage of cucumber fruit development. In present study, TIR1 and AFB2 were isolated from cucumber. CsTIR1 and CsAFB2 were highly expressed in leaves and ovaries. Their transcript levels decreased in parthenocarpic and pollinated fruits, but continuously up-regulated in aborted fruits, indicating that down-regulation of CsTIR1 and CsAFB2 may be in favor of cucumber fruit set and development. The transcript levels of CsTIR1 and CsAFB2 were significantly induced in leaves by NAA, 6-BA, GA3, ABA, and ethephon. The expression levels were up-regulated by ABA and ethephon treatments. This expression patterns was accordant with the aborted fruits. Thus, CsTIR1 and CsAFB2 may be important regulators during cucumber fruit development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CPPU:

N-(2-ehloro-4-Pyidyl)-N′-Phenylurea

TIR1:

Transport inhibitor response 1

AFB:

Auxin signaling F-box

NAA:

a-Naphthalene acetic acid

6-BA:

6-Benzylaminopurine

GA3 :

Gibberellin

ABA:

Abscisic acid

ORF:

Open reading frame

UTR:

Untranslated region

SKP1:

S-Phase kinase-associated protein 1

SAPK7:

Serine/threonine-protein kinase 7

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Audran–Delalande C, Bassa C, Mila I, Regad F, Zouine M, Bouzayen M (2012) Genome-wide identification, functional analysis and expression profiling of Aux/IAA gene family in tomato. Plant Cell Physiol 53(4):659–672

    Article  PubMed  Google Scholar 

  • Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86(2):263–274

    Article  CAS  PubMed  Google Scholar 

  • Beyer E, Quebedeaux B (1974) Parthenocarpy in cucumber: mechanism of action of auxin transport inhibitors. J Am Soc Hortic Sci 99(5):385–390

    CAS  Google Scholar 

  • Boonkorkaew P, Hikosaka S, Sugiyama N (2008) Effect of pollination on cell division, cell enlargement, and endogenous hormones in fruit development in a gynoecious cucumber. Sci Hortic 116(1):1–7

    Article  CAS  Google Scholar 

  • de Jong M, Mariani C, Vriezen WH (2009a) The role of auxin and gibberellin in tomato fruit set. J Exp Bot 60(5):1523–1532

    Article  PubMed  Google Scholar 

  • De Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH (2009b) The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J 57(1):160–170

    Article  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435(7041):441–445

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jurgens G, Estelle M (2005b) Plant development is regulated by a family of auxin receptor F-box proteins. Dev Cell 9(1):109–119

    Article  CAS  PubMed  Google Scholar 

  • Fos M, Nuez F (1996) Molecular expression of genes involved in parthenocarpic fruit set in tomato. Physiol Plant 98(1):165–171

    Article  CAS  Google Scholar 

  • Fu F, Mao W, Shi K, Zhou Y, Yu J (2010) Spatio-temporal changes in cell division, endoreduplication and expression of cell cycle-related genes in pollinated and plant growth substances-treated ovaries of cucumber. Plant Biology 12(1):98–107

    Article  CAS  PubMed  Google Scholar 

  • Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM (2006) AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell Online 18(8):1873–1886

    Article  CAS  Google Scholar 

  • Goetz M, Hooper LC, Johnson SD, Rodrigues JCM, Vivian–Smith A, Koltunow AM (2007) Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 145(2):351–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of Aux/IAA proteins. Nature 414(6861):271–276

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle T, Hagen G, Ulmasov T, Murfett J (1998a) How does auxin turn on genes? Plant Physiol 118(2):341–347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guilfoyle T, Ulmasov T, Hagen G (1998b) The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell Mol Life Sci 54(7):619–627

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41(12):1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey C (2008) A review of the Cucurbitaceae. Bot J Linn Soc 81(3):233–247

    Article  Google Scholar 

  • Kepinski S, Leyser O (2005a) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435(7041):446–451

    Article  CAS  PubMed  Google Scholar 

  • Kepinski S, Leyser O (2005b) Plant development: auxin in loops. Curr Biol 15(6):208–210

    Article  Google Scholar 

  • Kim IS, Okubo H, Fujieda K (1992) Endogenous levels of IAA in relation to parthenocarpy in cucumber (Cucumis sativus L.). Sci Hortic 52(1–2):1–8

    Article  CAS  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40(D1):302–305

    Article  Google Scholar 

  • Leyser O (2002) Molecular genetics of auxin signaling. Annu Rev Plant Biol 53(1):377–398

    Article  CAS  PubMed  Google Scholar 

  • Martinelli F, Uratsu SL, Reagan RL, Chen Y, Tricoli D, Fiehn O, Rocke DM, Gasser CS, Dandekar AM (2009) Gene regulation in parthenocarpic tomato fruit. J Exp Bot 60(13):3873–3890

    Article  CAS  PubMed  Google Scholar 

  • Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80

    Article  CAS  PubMed  Google Scholar 

  • Pandolfini T, Molesini B, Spena A (2007) Molecular dissection of the role of auxin in fruit initiation. Trends Plant Sci 12(8):327–329

    Article  CAS  PubMed  Google Scholar 

  • Parry G, Calderon–Villalobos L, Prigge M, Peret B, Dharmasiri S, Itoh H, Lechner E, Gray W, Bennett M, Estelle M (2009) Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci 106(52):22540–22545

    Article  CAS  PubMed  Google Scholar 

  • Ren Z, Li Z, Miao Q, Yang Y, Deng W, Hao Y (2011) The auxin receptor homologue in Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis. J Exp Bot 62(8):2815–2826

    Article  CAS  PubMed  Google Scholar 

  • Serrani JC, Ruiz–Rivero O, Fos M, García–Martínez JL (2008) Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J 56(6):922–934

    Article  CAS  PubMed  Google Scholar 

  • Talon M, Zacarias L, Primo–Millo E (1992) Gibberellins and parthenocarpic ability in developing ovaries of seedless mandarins. Plant Physiol 99(4):1575–1581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tan X, Calderon–Villalobos LIA, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446(7136):640–645

    Article  CAS  PubMed  Google Scholar 

  • Varoquaux F, Blanvillain R, Delseny M, Gallois P (2000) Less is better: new approaches for seedless fruit production. Trends Biotechnol 18(6):233–242

    Article  CAS  PubMed  Google Scholar 

  • Walker L, Estelle M (1998) Molecular mechanisms of auxin action. Curr Opin Plant Biol 1(5):434–439

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell Online 17(10):2676–2692

    Article  CAS  Google Scholar 

  • Weiler E, Jourdan P, Conrad W (1981) Levels of indole-3-acetic acid in intact and decapitated coleoptiles as determined by a specific and highly sensitive solid-phase enzyme immunoassay. Planta 153(6):561–571

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang J, Wang Z, Zhu Q, Wang W (2001) Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol 127(1):315–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin Z, Malinowski R, Ziółkowska A, Sommer H, Plcader W, Malepszy S (2006) The DefH9-iaaM-containing construct efficiently induces parthenocarpy in cucumber. Cell Mol Biol Lett 11(2):279–290

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the National Natural Science Foundation of China grant (The 973 Program: 2012CB3904), “Youth Science and Technology Innovation Fund” program of Nanjing agricultural university (No. KJ2012013), “Fundamental Research of Nanjing Agricultural University (Y0201100253)” and “Ph.D. Programs Foundation of Ministry of Education of China (20120097120037)”.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Chen.

Additional information

Communicated by Y. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, L., Zhang, T., Li, J. et al. Cloning and expression analysis of Cs-TIR1/AFB2: the fruit development-related genes of cucumber (Cucumis sativus L.). Acta Physiol Plant 36, 139–149 (2014). https://doi.org/10.1007/s11738-013-1394-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1394-7

Keywords

Navigation