Skip to main content
Log in

Evaluation of effects of arsenic on carbon, nitrogen, and sulfur metabolism in two contrasting varieties of Brassica juncea

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

This study evaluated the effects of arsenic (As) exposure on carbon, nitrogen, and sulfur (CNS) metabolism in Brassica juncea. Two contrasting, tolerant (TPM-1) and sensitive (TM-4), varieties of B. Juncea were selected and grown either in control sand (150 g) or in sand containing 10 mg of arsenate. Harvesting was performed at 7 and 15 days and various metabolites and enzymes of CNS as well as γ-aminobutyric acid (GABA) metabolism were analyzed. At 7 days, TM-4 showed significantly higher As accumulation and stressed phenotype with increase in superoxide radicals, malondialdehyde, and cell death, as compared with TPM-1. However, the level of hydrogen peroxide was higher in TPM-1 than in TM-4. The level of GABA and the activity of glutamate decarboxylase increased in both roots and shoots of TPM-1, but not in TM-4. The level of nitrate and sulfate increased and decreased in shoots of TPM-1 and TM-4, respectively. The supply of fumarate and succinate was maintained in both shoots and roots of TPM-1 while it was only in shoots of TM-4. There was significant alteration in the profile of amino acids and in sulfur and nitrogen metabolism. However, at 15 days, As accumulation of both varieties was found to be similar along with an increase in GABA, nitrate, and sulfate in both shoots and roots except sulfate in TM-4. Supply of fumarate and succinate was also maintained and other responses were found to be similar in TPM-1 and TM-4. The study demonstrates that responses of CNS metabolism differ in varietal and time-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Ala:

Alanine

APR:

5′-adenylylpersulfate reductase

APS:

ATP sulfurylase

As:

Arsenic

AsV:

Arsenate

Asn:

Asparagine

Asp:

Aspartate

GABA:

γ-aminobutyric acid

GAD:

Glutamate decarboxylase,

GABA-T:

GABA transaminase

GHB:

γ-hydroxybutyrate

Gln:

Glutamine

Glu:

Glutamate

Gly:

Glycine

GS:

Glutamine synthetase

GSH:

Glutathione

H2O2 :

Hydrogen peroxide

Ile:

Isoleucine

Leu:

Leucine

Lys:

Lysine

MDA:

Malondialdehyde

Met:

Methionine

NR:

Nitrate reductase

O •−2 :

Superoxide radicals

PC(s):

Phytochelatin(s)

Phe:

Phenylalanine

SAT:

Serine acetyltransferase

Ser:

Serine

SSA:

Succinic semialdehyde

SSADH:

Succinic semialdehyde dehydrogenase

Val:

Valine

References

  • Agrawal B, Czymmek KJ, Sparks DL, Bais HP (2013) Transient influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale. J Biol Chem 288:7351–7362

    Article  PubMed  CAS  Google Scholar 

  • Akçay N, Bor M, Karabudak T, Özdemir F, Türkan I (2012) Contribution of gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants. J Plant Physiol 169:452–458

    Article  PubMed  Google Scholar 

  • Allan WL, Simpson JP, Clark SM, Shelp BJ (2008) γ-Hydroxybutyrate accumulation in Arabidopsis and tobacco plants is a general response to abiotic stress: putative regulation by redox balance and glyoxylate reductase isoforms. J Exp Bot 59:2555–2564

    Article  PubMed  CAS  Google Scholar 

  • Barbosa JM, Singh NK, Cherry JH, Locy RD (2010) Nitrate uptake and utilization is modulated by exogenous γ-aminobutyric acid in Arabidopsis thaliana seedlings. Plant Physiol Biochem 48:443–450

    Article  PubMed  CAS  Google Scholar 

  • Beuve N, Rispail N, Laine P, Cliquet J-B, Ourry A, Deunff EL (2004) Putative role of γ-aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant. Cell Environ 27:1035–1046

    Article  CAS  Google Scholar 

  • Bleeker PM, Schat H, Vooijs R, Verkleij JAC, Ernst WHO (2003) Mechanisms of arsenate tolerance in Cytisus striatus. New Phytol 157:33–38

    Article  CAS  Google Scholar 

  • Bouché N, Fromm H (2004) Gaba in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  PubMed  Google Scholar 

  • Castellari M, Versari A, Spinabelli U, Galassi S, Amati A (2000) An improved HPLC method for the analysis of organic acids, carbohydrates and alcohols in grape musts and wines. J Liq Chromatogr Relat Technol 23:2047–2056

    Article  CAS  Google Scholar 

  • Chai MW, Li RL, Shi FC, Liu FC, Pan X, Cao D, Wen X (2012) Effects of cadmium stress on growth, metal accumulation and organic acids of Spartina alterniflora Loisel. Afr J Biotechnol 11:6091–6099

    CAS  Google Scholar 

  • Chiang PN, Wang MK, Chiu CY, Chou SY (2006) Effects of cadmium amendments on low-molecular weight organic acid exudates in rhizosphere soils of tobacco and sunflower. Environ Toxicol 21:479–488

    Article  PubMed  CAS  Google Scholar 

  • Davidian JC, Kopriva S (2010) Regulation of sulphate uptake and assimilation—the same or not the same? Mol Plant 3:314–325

    Article  PubMed  CAS  Google Scholar 

  • Diaz C, Kusano M, Sulpice R, Araki M, Redestig H, Saito K, Stitt M, Shin R (2011) Determining novel functions of Arabidopsis 14-3-3 proteins in central metabolic processes. BMC Syst Biol 5:192

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi S, Tripathi RD, Srivastava S, Singh R, Kumar A, Tripathi P, Dave R, Rai UN, Chakrabarty D, Trivedi PK, Tuli R, Adhikari B, Bag MK (2010) Arsenic affects mineral nutrients in grains of various Indian rice (Oryza sativa L.) genotypes grown on arsenic-contaminated soils of West Bengal. Protoplasma 245:113–124

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi S, Mishra A, Tripathi P, Dave R, Kumar A, Srivastava S, Chakrabarty D, Trivedi PK, Adhikari B, Norton GJ, Tripathi RD, Nautiyal CS (2012) Arsenic affects essential and non-essential amino acids differentially in rice grains: inadequacy of amino acids in rice based diet. Environ Intl 46:16–22

    Article  CAS  Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182

    Article  PubMed  CAS  Google Scholar 

  • Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633

    PubMed  CAS  Google Scholar 

  • Gajewska E, Skłodowska M (2008) Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation. Plant Growth Regul 54:179–188

    Article  CAS  Google Scholar 

  • Gojon A, Gaymard F (2010) Keeping nitrate in the roots: an unexpected requirement for cadmium tolerance in plants. J Mol Cell Biol 2:299–301

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts 1. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856

    Article  PubMed  CAS  Google Scholar 

  • Kamphake LJ, Hannah SA, Cohen JM (1967) Automated analysis for nitrate by hydrazine reduction. Water Res 1:205–216

    Article  CAS  Google Scholar 

  • Kleczkowski LA, Randall DD, Blevins DG (1987) Inhibition of spinach leaf NADPH (NADH)-glyoxylate reductase by acetohydroxamate, aminooxyacetate, and glycidate. Plant Physiol 84:619–623

    Article  PubMed  CAS  Google Scholar 

  • Kováčik J, Gruz J, Klejdus B, Stork F, Marchiosi R, Ferrarese-Filho O (2010) Lignification and related parameters in copper-exposed Matricaria chamomilla roots: role of H2O2 and NO in this process. Plant Sci 179:383–389

    Article  Google Scholar 

  • Kováčik J, Klejdus B, Stork F, Hedbavny J (2011a) Nitrate deficiency reduces cadmium and nickel accumulation in Chamomile plants. J Agric Food Chem 59:5139–5149

    Article  PubMed  Google Scholar 

  • Kováčik J, Klejdus B, Hedbavny J, Zon J (2011b) Significance of phenols in cadmium and nickel uptake. J Plant Physiol 168:576–584

    Article  PubMed  Google Scholar 

  • Kramer D, Breitenstein B, Kleinwächter M, Selmar D (2010) Stress metabolism in green coffee beans (Coffea arabica L.): expression of dehydrins and accumulation of GABA during drying. Plant Cell Physiol 51:546–553

    Article  PubMed  CAS  Google Scholar 

  • Lancien M, Roberts M (2006) Regulation of Arabidopsis thaliana 14-3-3 gene expression by γ-aminobutyric acid. Plant, Cell Environ 29:1430–1436

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randal EJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lunn JE, Droux M, Martin J, Douce R (1990) Localization of ATP sulfurylase and O-acetylserine(thiol)lyase in spinach leaves. Plant Physiol 94:1345–1352

    Article  PubMed  CAS  Google Scholar 

  • Mae N, Makino Y, Oshita S, Kawagoe Y, Tanaka A, Aoki K, Kurabayashi A, Akihiro T, Akama K, Koike S, Takayama M, Matsukura C, Ezura H (2012) Accumulation mechanism of γ-aminobutyric acid in tomatoes (Solanum lycopersicon L.) under low O2 with and without CO2. J Agric Food Chem 60:1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1992) Suppression of the high-affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  • Niessen M, Krause K, Horst I, Staebler N, Klaus S, Gaertner S, Kebeish R, Araujo WL, Fernie AR, Peterhansel C (2012) Two alanine aminotranferases link mitochondrial glycolate oxidation to the major photorespiratory pathway in Arabidopsis and rice. J Exp Bot 63:2705–2716

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Simultaneous measurement of foliar glutathione, γ-glutamylcysteine, and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione. Anal Biochem 264:98–110

    Article  PubMed  CAS  Google Scholar 

  • Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signalling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant 3:973–996

    Article  PubMed  CAS  Google Scholar 

  • Peck HD Jr, Deacon TE, Davidson JT (1965) Studies on adenosine 5′-phosphosulfate reductase from Desulfovibrio desulfuricans and Thiobacillus thioparus. I. The assay and purification. Biochim Biophys Acta 96:429–446

    Article  PubMed  CAS  Google Scholar 

  • Renault H, Roussel V, Amrani AE, Arzel M, Renault D, Bouchereau A, Deleu C (2010) The Arabidopsis pop 2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol 10:20

    Article  PubMed  Google Scholar 

  • Schraudner M, MoederW Wiese C, Van Camp W, Inze D, Langebartels C, Sandermann H Jr (1998) Ozone-induced oxidative burst in the ozone bio monitor plant, tobacco Bel W3. Plant J 16:235–245

    Article  PubMed  CAS  Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4:446–452

    Article  PubMed  Google Scholar 

  • Singh N, Ma LQ, Vu JC, Raj A (2009a) Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns. Environ Pollut 157:2300–2305

    Article  PubMed  CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK (2009b) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20:289–297

    Article  PubMed  CAS  Google Scholar 

  • Song H, Xu X, Wang H, Wang H, Tao Y (2012) Exogenous γ-aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings. J Sci Food Agric 90:1410–1416

    Article  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2009) Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Bot 60:3419–3431

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Suprasanna P, D’Souza SF (2011) Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. Protoplasma 248:805–815

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Srivastava AK, Singh B, Suprasanna P, D’Souza SF (2013a) The effect of arsenic on pigment composition and photosynthesis in Hydrilla verticillata (L.f.) Royle. Biol Plant 57:385–389

    Article  CAS  Google Scholar 

  • Srivastava S, Akkarakaran JJ, Suprasanna P, D’Souza SF (2013b) Response of adenine and pyridine metabolism during germination and early seedling growth under arsenic stress in Brassica juncea. Acta Physiol Plant 35:1081–1091

    Article  CAS  Google Scholar 

  • Sun RL, Zhou QX, Jin CX (2006) Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil 285:125–134

    Article  CAS  Google Scholar 

  • Sun RL, Zhou QX, Wei SH (2011) Cadmium accumulation in relation to organic acids and nonprotein thiols in leaves of recently found Cd hyperaccumulator Rorippa globosa and the Cd-accumulating plant Rorippa islandica. J Plant Growth Regul 30:83–91

    Article  CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1970) A simple turbidimetric method of determining total sulphur in plant materials. Agron J 62:805–806

    Article  CAS  Google Scholar 

  • Uroic MK, Salaun P, Raab A, Feldmann J (2012) Arsenate impact on the metabolite profile, production, and arsenic loading of xylem sap in cucumbers (Cucumis sativus L.). Front Physiol 3:55

    Article  PubMed  CAS  Google Scholar 

  • Wang HB, Xie F, Yao YZ, Zhao B, Xiao QQ, Pan YH, Wang HJ (2012) The effects of arsenic and induced-phytoextraction methods on photosynthesis in Pteris species with different arsenic-accumulating abilities. Environ Exp Bot 75:298–306

    Article  CAS  Google Scholar 

  • Yang X-E, Peng H-Y, Tian S-K (2005) Gama-aminobutyric acid accumulation in Elsholtzia splendens in response to copper toxicity. J Zhejiang Univ Sci B 6:96–99

    Article  PubMed  Google Scholar 

  • Zhang G, Bown AW (1997) The rapid determination of γ-aminobutyric acid. Phytochemistry 44:1007–1009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Srivastava.

Additional information

Communicated by G. Klobus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 417 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathare, V., Srivastava, S. & Suprasanna, P. Evaluation of effects of arsenic on carbon, nitrogen, and sulfur metabolism in two contrasting varieties of Brassica juncea . Acta Physiol Plant 35, 3377–3389 (2013). https://doi.org/10.1007/s11738-013-1370-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1370-2

Keywords

Navigation