Skip to main content
Log in

Electrolyte leakage and chlorophyll a fluorescence among castor bean cultivars under induced water deficit

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

We evaluated leaf fragments of three castor bean cultivars after being subjected to water stress. Leaf discs were exposed to polyethylene glycol (PEG-6000) solutions for tissue dehydration at various water potentials. After water-stress imposition, electrolyte leakage and chlorophyll a fluorescence were used jointly on the same leaf fragments cut from the same plant leaf. Furthermore, these two experimental procedures were adapted to unequivocally distinguish cultivars’ responses to water stress. Electrolyte leakage, ion efflux, membrane injury index and maximum quantum yield of photosystem II showed genotypic differences between cultivars. Despite these genotypic differences, the photosystem II electron transport rate was not significantly affected by water stress. The membrane injury shown may have been transient, probably due to a disarrangement in the phospholipid bilayer. The use of the two experimental procedures on the same leaf samples was less time-consuming and allowed for more reliable results. Furthermore, the procedures proved efficient for selection of physiological water-stress tolerance traits and could be employed in other plant experimental models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anvisa—Agência Nacional de Vigilância Sanitária, Ministério da Saúde (2005) Formulário Nacional. Ministério da Saúde. Brasília, DF, Brasil: Editora ANVISA

  • Azevêdo DMP, Lima EF, Batista FAZ (1997) Recomendações técnicas para o cultivo da mamoneira (Ricinus communis L.) no Brasil. Campina Grande, PB, Brasil: CNPA

  • Bajji M, Kinet JM, Lutts S (2002) The use of electrolyte leakage method for assessing cell membrane stability as water stress tolerance test in durum wheat. Plant Growth Regul 36:61–70

    Article  CAS  Google Scholar 

  • Bandurska H (2000) Does proline accumulated in leaves of water deficits stressed barley plants confine cell membrane injury? I. Free proline accumulation and membrane injury index in drought and osmotically stressed plants. Acta Physiol Plant 22:409–415

    Article  CAS  Google Scholar 

  • Dai Z, Edwards GE, Ku MSB (1992) Control of photosynthesis and stomatal conductance in Ricinus communis L. (castor bean) by leaf to air vapor pressure deficit. Plant Physiol 99:1426–1434

    Article  PubMed  CAS  Google Scholar 

  • Ehwald R, Richter E, Schlangstedt M (1984) Solute leakage from isolated parenchyma of Allium cepa and Kalanchoë daigremontiana. J Exp Bot 35(8):1095–1103

    Article  CAS  Google Scholar 

  • Ferreira GB, Beltrão NEM, Severino LS, Gondim TMS, Pedrosa MB (2006) A cultura da mamona no Cerrado: riscos e oportunidades. Embrapa. http://www.infoteca.cnptia.embrapa.br/handle/doc/276576. Accessed 17 Nov 2011

  • Germ M, Kreft I, Stibilj V, Urbanc-Berčič O (2007) Combined effects of selenium and drought on photosynthesis and mitochondrial respiration in potato. Plant Physiol Biochem 45:162–167

    Article  PubMed  CAS  Google Scholar 

  • Han B, Kermode AR (1996) Dehydrin-like proteins in castor bean seeds and seedlings are differentially produced in response to ABA and water-deficit-related stresses. J Exp Bot 47(300):933–939

    Article  CAS  Google Scholar 

  • Heckenberger U, Roggatz U, Schurr U (1998) Effect of drought stress on the cytological status in Ricinus communis. J Exp Bot 49(319):181–189

    CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soils. California Agricultural Experimental Station, Berkeley

    Google Scholar 

  • Kocheva KV, Lambrev P, Georgiev GI, Goltsev V, Karabaliev M (2004) Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Bioelectrochemistry 63:121–124

    Article  PubMed  CAS  Google Scholar 

  • Lauriano JA, Lidon FC, Carvalho CA, Campos PS, Matos MC (2000) Drought effects on membrane lipids and photosynthetic activity in different peanuts cultivars. Photosynthetica 38:7–12

    Article  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. In: Water, radiation, salt and other stresses, vol II. Academic Press, New York

  • Li G, Wan S, Zhou J, Yang Z, Qin P (2010) Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind Crop Prod 31:13–19

    Article  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 603:591–593

    Google Scholar 

  • Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999) Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol 119:1091–1099

    Article  PubMed  CAS  Google Scholar 

  • Marques da Silva J, Arrabaça MC (2004) Photosynthesis in the water-stressed C4 grass Setaria sphacelata is mainly limited by stomata with both rapidly and slowly imposed water deficits. Physiol Plant 121:409–420

    Article  Google Scholar 

  • Martinoia E, Schramm MJ, Kaiser G, Kaiser WM, Heber U (1986) Transport of anions in isolated vacuoles. 1. Permeability to anions and evidence for a Cl-uptake system. Plant Physiol 80:895–901

    Article  PubMed  CAS  Google Scholar 

  • McKersie BD, Stinson RH (1980) Effect of dehydration on leakage and membrane structure in Lotus corniculatus L. seeds. Plant Physiol 66:316–320

    Article  PubMed  CAS  Google Scholar 

  • Money NP (1989) Osmotic pressure of aqueous polyethylene glycols. Relationship between molecular weight and vapor pressure deficit. Plant Physiol 91:766–769

    Article  PubMed  CAS  Google Scholar 

  • Ögren E, Öquist G (1985) Effects of drought on photosynthesis, chlorophyll fluorescence and photoinhibition susceptibility in intact willow leaves. Planta 166:380–388

    Article  Google Scholar 

  • Palta JP, Levitt J, Stadelmann EJ (1977) Freezing injury in onion bulb cells. I. Evaluation of the conductivity methods and analysis of ion and sugar efflux from injured cells. Plant Physiol 60:393–397

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro HA, Silva JV, Endres L, Ferreira VM, Câmara CA, Cabral FF, Oliveira JF, Carvalho LWT, Santos JM, Santos-Filho BC (2008) Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L.) seedlings subjected to salt stress conditions. Ind Crop Prod 27:385–392

    Article  CAS  Google Scholar 

  • Prášil I, Zámečník J (1998) The use of a conductivity measurement method for assessing freezing injury. I. Influence of leakage time, segment number, size and shape in a sample on evaluation of the degree of injury. Environ Exp Bot 40:1–10

    Article  Google Scholar 

  • Premachandra GS, Saneoka H, Ogata S (1989) Nutrio-physiological evaluation of polyethylene glycol test of cell membrane stability in maize. Crop Sci 29:1287–1292

    Article  Google Scholar 

  • Premachandra GS, Ogata S, Saneoka H (1990) Cell membrane stability and leaf water relations as affected by nitrogen nutrition under water stress in maize. Soil Sci Plant Nutr 36:653–659

    Article  Google Scholar 

  • Rovere ELL, Avzaradel AC, Monteiro JMG (2009) Potential synergy between adaptation and mitigation strategies: production of vegetables oils and biodiesel in northeastern Brazil. Clim Res 40:233–239

    Article  Google Scholar 

  • Saneoka H, Moghaieb REA, Premachandra GS, Fujita K (2004) Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environ Exp Bot 52:131–138

    Article  CAS  Google Scholar 

  • Sayar R, Khemira H, Kameli A, Mosbahi M (2008) Physiological tests as peredictive appreciation for drought tolerance in durum wheat (Triticum durum Desf.). Agron Res 6:79–90

    Google Scholar 

  • Schapendonk AHCM, Spitters CJT, Groot PJ (1989) Effects of water stress on photosynthesis and chlorophyll fluorescence of five potato cultivar. Potato Res 32:17–32

    Article  Google Scholar 

  • Senaratna T, McKersie BD (1983) Characterization of solute efflux from dehydration injured soybean (Glycine max L. Merr) seeds. Plant Physiol 72:911–914

    Article  PubMed  CAS  Google Scholar 

  • Thiele A, Krause GH, Winter K (1998) In situ study of photoinhibition of photosynthesis and xanthophyll cycle activity in plants growing in natural gaps of the tropical forest. Aust J Plant Physiol 25:189–195

    Article  Google Scholar 

  • Vasquez-Tello A, Zuily-Fodil Y, Phan Thi AT, Vieira da Silva JB (1990) Electrolyte and Pi leakage and soluble sugar content as physiological test for screening resistance to water stress in Phaseolus and Vigna species. J Exp Bot 41:827–832

    Article  CAS  Google Scholar 

  • Vieira da Silva JB (1976) Water stress, ultrastructure and enzymatic activity. In: Lange OL, Kapen L, Schulze ED (eds) Water and plant life: problems and modern approaches. Springer, Berlin, pp 207–224

    Chapter  Google Scholar 

  • Wang JZ, Cui LJ, Wang Y, Li JL (2009) Growth, lipid peroxidation and photosynthesis in two tall fescue cultivars differing in heat tolerance. Biol Plant 53:237–242

    Article  CAS  Google Scholar 

  • Zhao L, Liu F, Xu W, Di C, Zhou S, Xue Y, Yu J, Su Z (2009) Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Plant Biotech J 7:550–561

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to EMBRAPA-Algodão and the Instituto Agronômico de Campinas for kindly supplying castor bean seeds and to J.S. Garcia, C.K.R. Barbosa, A.C. Souza and M.S. Silva for assistance with plant cultivation and the experiments. We also thank Alistair Hayward for the translation and review of the English version of the text. This work was supported by FAPEMIG.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Giovanni Costa França.

Additional information

Communicated by U. Feller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental material:

Fig. S1. Apparatus used to adapt castor bean leaf fragments to light. This apparatus was designed with the aim of adapting samples subjected to PEG-6000 to light. It consists of 12 dichroic lamps (20 W 12 V - B) powered by electronic reactors (A). Each lamp provides an easily distinguishable spotlight (D). The light intensity of these lamps can be adjusted by using a dimmer (E) and through altering the distance between the light source and the samples. The apparatus is equipped with a glass box (C) containing an adequate layer of water to prevent samples from overheating, as well as allowing for alterations in photons flow.

Supplementary material 1 (JPEG 343 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Faria, A.P., Lemos-Filho, J.P., Modolo, L.V. et al. Electrolyte leakage and chlorophyll a fluorescence among castor bean cultivars under induced water deficit. Acta Physiol Plant 35, 119–128 (2013). https://doi.org/10.1007/s11738-012-1054-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1054-3

Keywords

Navigation